14 research outputs found

    Alkaline pH has an unexpected effect on transcriptional pausing during synthesis of the Escherichia coli pH-responsive riboswitch

    No full text
    Riboswitches are 5'-untranslated regions of mRNA that change their conformation in response to ligand binding, allowing post-transcriptional gene regulation. This ligand-based model of riboswitch function has been expanded with the discovery of a "pH-responsive element" (PRE) riboswitch in Escherichia coli. At neutral pH, the PRE folds into a translationally inactive structure with an occluded ribosome-binding sequence, whereas at alkaline pH, the PRE adopts a translationally active structure. This unique riboswitch does not rely on ligand binding in a traditional sense to modulate its alternative folding outcomes. Rather, pH controls riboswitch folding by two possible modes that are yet to be distinguished; pH either regulates the transcription rate of RNA polymerase (RNAP) or acts on the RNA itself. Previous work suggested that RNAP pausing is prolonged by alkaline pH at two sites, stimulating PRE folding into the active structure. To date, there has been no rigorous exploration into how pH influences RNAP pausing kinetics during PRE synthesis. To provide that understanding and distinguish between pH acting on RNAP versus RNA, we investigated RNAP pausing kinetics at key sites for PRE folding under different pH conditions. We find that pH influences RNAP pausing but not in the manner proposed previously. Rather, alkaline pH either decreases or has no effect on RNAP pause longevity, suggesting that the modulation of RNAP pausing is not the sole mechanism by which pH affects PRE folding. These findings invite the possibility that the RNA itself actively participates in the sensing of pH

    Phosphorylation and acetylation of mitochondrial transcription factor A promote transcription processivity without compromising initiation or DNA compaction.

    No full text
    Mitochondrial transcription factor A (TFAM) plays important roles in mitochondrial DNA compaction, transcription initiation, and in the regulation of processes like transcription and replication processivity. It is possible that TFAM is locally regulated within the mitochondrial matrix via such mechanisms as phosphorylation by protein kinase A and nonenzymatic acetylation by acetyl-CoA. Here, we demonstrate that DNA-bound TFAM is less susceptible to these modifications. We confirmed using EMSAs that phosphorylated or acetylated TFAM compacted circular double-stranded DNA just as well as unmodified TFAM and provide an in-depth analysis of acetylated sites on TFAM. We show that both modifications of TFAM increase the processivity of mitochondrial RNA polymerase during transcription through TFAM-imposed barriers on DNA, but that TFAM bearing either modification retains its full activity in transcription initiation. We conclude that TFAM phosphorylation by protein kinase A and nonenzymatic acetylation by acetyl-CoA are unlikely to occur at the mitochondrial DNA and that modified free TFAM retains its vital functionalities like compaction and transcription initiation while enhancing transcription processivity

    Substrate Activation in Flavin-Dependent Thymidylate Synthase

    No full text
    Thymidylate is a critical DNA nucleotide that has to be synthesized in cells <i>de novo</i> by all organisms. Flavin-dependent thymidylate synthase (FDTS) catalyzes the final step in this <i>de novo</i> production of thymidylate in many human pathogens, but it is absent from humans. The FDTS reaction proceeds via a chemical route that is different from its human enzyme analogue, making FDTS a potential antimicrobial target. The chemical mechanism of FDTS is still not understood, and the two most recently proposed mechanisms involve reaction intermediates that are unusual in pyrimidine biosynthesis and biology in general. These mechanisms differ in the relative timing of the reaction of the flavin with the substrate. The consequence of this difference is significant: the intermediates are cationic in one case and neutral in the other, an important consideration in the construction of mechanism-based enzyme inhibitors. Here we test these mechanisms via chemical trapping of reaction intermediates, stopped-flow, and substrate hydrogen isotope exchange techniques. Our findings suggest that an initial activation of the pyrimidine substrate by reduced flavin is required for catalysis, and a revised mechanism is proposed on the basis of previous and new data. These findings and the newly proposed mechanism add an important piece to the puzzle of the mechanism of FDTS and suggest a new class of intermediates that, in the future, may serve as targets for mechanism-based design of FDTS-specific inhibitors
    corecore