24 research outputs found

    ILC2s and Adipose Tissue Homeostasis: Progress to Date and the Road Ahead

    Get PDF
    Group 2 innate lymphoid cells (ILC2s) were initially identified as a new type of lymphocytes that produce vigorous amounts of type 2 cytokines in adipose tissue. Subsequent studies revealed that ILC2s are present not only in adipose tissue but also in various other tissues such as lung and skin. ILC2s are generally recognized as tissue-resident immune cells that regulate tissue homeostasis. ILC2s express receptors for various humoral factors and thus can change their functions or distribution depending on the environment and circumstances. In this review, we will outline our recent understanding of ILC2 biology and discuss future directions for ILC2 research, particularly in adipose tissue and metabolic homeostasis.publishedVersio

    Prolyl Isomerase Pin1 Protects Mice from Endotoxin Shock

    Get PDF
    Prolyl isomerase Pin1 may be involved in innate immunity against microbial infection, but the mechanism how Pin1 controls the innate immunity is poorly understood.Injection of lipopolysaccharide (LPS) into the mice induces inflammatory pulmonary disorder and sometimes the serious damages lead to death. Comparing to the wild-type (WT) mice, the Pin1⁻/⁻ mice showed more serious damages in lung and the lower survival rate after the LPS injection. We compared the levels of typical inflammatory cytokines. Pin1⁻/⁻ mice overreacted to the LPS injection to produce inflammatory cytokines, especially IL-6 more than WT mice. We showed that Pin1 binds phosphorylated PU.1 and they localize together in a nucleus. These results suggest that Pin1 controls the transcriptional activity of PU.1 and suppresses overreaction of macrophage that causes serious damages in lung.Pin1 may protect the mice from serious inflammation by LPS injection by attenuating the increase of IL-6 transcription of the mouse macrophages

    The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Get PDF
    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis

    The RAB2B-GARIL5 Complex Promotes Cytosolic DNA-Induced Innate Immune Responses

    Get PDF
    Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that induces the IFN antiviral response. However, the regulatory mechanisms that mediate cGAS-triggered signaling have not been fully explored. Here, we show the involvement of a small GTPase, RAB2B, and its effector protein, Golgi-associated RAB2B interactor-like 5 (GARIL5), in the cGAS-mediated IFN response. RAB2B-deficiency affects the IFN response induced by cytosolic DNA. Consistent with this, RAB2B deficiency enhances replication of vaccinia virus, a DNA virus. After DNA stimulation, RAB2B colocalizes with stimulator of interferon genes (STING), the downstream signal mediator of cGAS, on the Golgi apparatus. The GTP-binding activity of RAB2B is required for its localization on the Golgi apparatus and for recruitment of GARIL5. GARIL5 deficiency also affects the IFN response induced by cytosolic DNA and enhances replication of vaccinia virus. These findings indicate that the RAB2B-GARIL5 complex promotes IFN responses against DNA viruses by regulating the cGAS-STING signaling axis

    Application of Two-Dimensional Nuclear Magnetic Resonance for Signal Enhancement by Spectral Integration Using a Large Data Set of Metabolic Mixtures

    No full text
    Nuclear magnetic resonance (NMR) spectroscopy has tremendous advantages of minimal sample preparation and interconvertibility of data among different institutions; thus, large data sets are frequently acquired in metabolomics studies. Previously, we used a novel analytical strategy, named signal enhancement by spectral integration (SENSI), to overcome the low signal-to-noise ratio (S/N ratio) problem in <sup>13</sup>C NMR by integration of hundreds of spectra without additional measurements. In this letter, the development of a SENSI 2D method and application to >1000 2D <i>J</i>RES NMR spectra are described. Remarkably, the obtained SENSI 2D spectrum had an approximate 14-fold increase in the S/N ratio and 80–250 additional peaks without any additional measurements. These results suggest that SENSI 2D is a useful method for assigning weak signals and that the use of coefficient of variation values can support the assignment information and extraction of features from the population characteristics among large data sets

    Human Metabolic, Mineral, and Microbiota Fluctuations Across Daily Nutritional Intake Visualized by a Data-Driven Approach

    No full text
    Daily intake information is important for an understanding of the metabolic fluctuation of humans exposed to environmental stimuli. However, little investigation has been performed on the variations in dietary intake as an input and the relationship with human fecal, urinary, and salivary metabolic fluctuations as output information triggered by daily dietary intake. In the present study, we describe a data-driven approach for visualizing the daily intake information on a nutritional scale and for evaluating input–output responses under uncontrolled diets in a human study. For the input evaluation of nutritional intake, we collected information about daily dietary intake and converted this information to numeric data of nutritional elements. Furthermore, for the evaluation of output metabolic, mineral, and microbiota responses, we characterized the metabolic, mineral, and microbiota variations of noninvasive human samples of feces, urine, and saliva. The data-driven approach captured significant differences in the fluctuation of intestinal microbiota and some metabolites caused by a high-protein and a high-fat diet in daily life. This approach should contribute to the metabolic assessment of humans affected by environmental and nutritional factors under unlimited and uncontrolled diets

    Application of Market Basket Analysis for the Visualization of Transaction Data Based on Human Lifestyle and Spectroscopic Measurements

    No full text
    With the innovation of high-throughput metabolic profiling methods such as nuclear magnetic resonance (NMR), data mining techniques that can reveal valuable information from substantial data sets are constantly desired in this field. In particular, for the analytical assessment of various human lifestyles, advanced computational methods are ultimately needed. In this study, we applied market basket analysis, which is generally applied in social sciences such as marketing, and used transaction data derived from dietary intake information and urinary chemical data generated using NMR and inductively coupled plasma optical emission spectrometry measurements. The analysis revealed several relationships, such as fish diets with high trimethylamine <i>N</i>-oxide excretion and <i>N</i>-methylnicotinamide excreted at higher levels in the morning and produced from a protein that was consumed one day prior. Therefore, market basket analysis can be applied to metabolic profiling to effectively understand the relationships between metabolites and lifestyle
    corecore