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SUMMARY

Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA
sensor that induces the IFN antiviral response. How-
ever, the regulatory mechanisms that mediate cGAS-
triggered signaling have not been fully explored.
Here, we show the involvement of a small GTPase,
RAB2B, and its effector protein, Golgi-associated
RAB2B interactor-like 5 (GARIL5), in the cGAS-medi-
ated IFN response. RAB2B-deficiency affects the
IFN response induced by cytosolic DNA. Consistent
with this, RAB2B deficiency enhances replication of
vaccinia virus, a DNA virus. After DNA stimulation,
RAB2B colocalizes with stimulator of interferon
genes (STING), the downstream signal mediator of
cGAS, on the Golgi apparatus. The GTP-binding ac-
tivity of RAB2B is required for its localization on the
Golgi apparatus and for recruitment of GARIL5.
GARIL5 deficiency also affects the IFN response
induced by cytosolic DNA and enhances replication
of vaccinia virus. These findings indicate that the
RAB2B-GARIL5 complex promotes IFN responses
against DNA viruses by regulating the cGAS-STING
signaling axis.

INTRODUCTION

Innate immunity functions as the first line of defense against

a variety of invading pathogens. The recognition of pathogen-

associated molecular patterns by germline-encoded pattern

recognition receptors (PRRs), such as Toll-like receptors

(TLRs), retinoic acid-inducible gene- I (RIG-I)-like receptors,

nucleotide binding oligomerization domain (NOD)-like receptors,

and cyclic GMP-AMP (cGAMP) synthase (cGAS), initiates innate

immune responses (Palm and Medzhitov, 2009; Beutler, 2009;

Kawai and Akira, 2009; Schroder and Tschopp, 2010; Cai et al.,
2944 Cell Reports 20, 2944–2954, September 19, 2017 ª 2017 The A
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2014). Upon recognition, these receptors trigger signal transduc-

tionpathways that induce type I interferon (IFN) andproinflamma-

tory cytokines, which are essential to generate an innate immune

response, as well as in subsequent adaptive immune responses.

DNA derived from bacteria, DNA viruses, and dead host cells

trigger an innate immune response (Ishii et al., 2006; Stetson and

Medzhitov, 2006; Ishii et al., 2008; Charrel-Dennis et al., 2008;

Schroder et al., 2009; Hornung et al., 2009). Recent studies

have identified cGAS as a cytosolic DNA sensor (Sun et al.,

2013; Wu et al., 2013). Upon DNA binding, cGAS synthesizes

cGAMP from ATP and guanosine triphosphate (GTP) (Ablasser

et al., 2013; Gao et al., 2013; Diner et al., 2013). In turn, cGAMP

functions as a second messenger and is recognized by stimu-

lator of interferon genes (STING), an endoplasmic reticulum

(ER)-resident protein. After cGAMP recognition, STING moves

from the ER to the Golgi apparatus and finally reaches cyto-

plasmic punctate structures to assemble with TANK-binding ki-

nase 1 (TBK1) (Ishikawa and Barber, 2008; Ishikawa et al., 2009;

Saitoh et al., 2009). Subsequently, TBK1 phosphorylates the

transcription factor interferon regulatory factor 3 (IRF3) to acti-

vate the transcription of type I IFN and IFN-inducible genes.

Consistent with this, the cGAS-STING-TBK1 signaling axis plays

an essential role in antiviral IFN responses against DNA viruses

(Li et al., 2013; Schoggins et al., 2014). Therefore, clarification

of the molecular mechanisms underlying cGAS-triggered

signaling is needed to better understand the process of innate

immunity.

The Rab family belongs to the Ras superfamily of small

GTPases. Approximately 60 Rab genes are present in the human

genome, and a number of these are conserved from yeast to

mammals. The Rab family regulates various cellular events,

such as vesicle formation, vesicle movement along the cytoskel-

eton, andmembrane fusion, that occur on organelles (Stenmark,

2009). Comprehensive screening experiments have revealed

that Rab GTPases and their regulatory molecules, GDP-GTP ex-

change factors and GTPase-activating proteins, control various

biological processes, such as autophagy, exocytosis, cell migra-

tion, and primary cilium formation (Matsui and Fukuda, 2013;
uthor(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. RAB2B Regulates DNA-Induced

Innate Immune Responses

(A) Immortalized wild-type MEFs treated with

siRNA against the indicated Rab GTPases were

stimulated with poly(dI:dC) for 24 hr. The levels of

IFN-b in the culture supernatants were measured

by ELISA.

(B) Primary MEFs stably expressing the indicated

shRNAs were stimulated with the indicated li-

gands (500 ng/mL or 1,000 ng/mL) for 24 hr. The

levels of IFN-b in the supernatants were measured

by ELISA. The results shown are means ± SD

(n = 3); *p < 0.01.

(C) Primary MEFs stably expressing the indicated

shRNAs were stimulated with the indicated li-

gands for 6 hr. The levels of Ifnb1 mRNA were

measured by real-time qPCR. The results shown

are means ± SD (n = 3); *p < 0.01.
Zografou et al., 2012; Linford et al., 2012; Yoshimura et al., 2007).

Importantly, Rab GTPases are also involved in TLR-mediated

immune responses. RAB11A regulates the recruitment of TLR4

and TRIF-related adaptor molecule (TRAM) to the phagosome,

a process requiring TLR4 signaling (Husebye et al., 2010). Proper

intracellular trafficking of TLR4 and TRAMby RAB11A is required

for maximal activation of IRF3, and RAB7B limits activation of the

TLR4 signaling pathway by promoting lysosomal degradation of

TLR4 (Wang et al., 2007). Therefore, Rab family GTPases might

play a critical role in regulating innate immune responses medi-

ated by other PRRs. Although previous studies have shown

that the ER and Golgi apparatus are involved in STING-mediated

signaling, little is known about a regulator of STING that acts on

these organelles. Hence, we focused on the Rab family and iden-

tified a positive regulator of the cGAS-STING signaling axis. Here

we show that RAB2B is required for antiviral responses against

DNA viruses.

RESULTS

RAB2B Regulates DNA-Induced Innate Immune
Responses
We first performed small interfering RNA (siRNA)-based

screening to search for Rab GTPases whose knockdown

affected cytosolic DNA-induced production of IFN-b in immor-

talized mouse embryonic fibroblasts (MEFs). Knockdown of

Rab2b, Rab34, and Rab36 mRNA inhibited IFN-b production

induced by DNA (Figure 1A). In the present study, we focused
Cell Reports
on RAB2B, which was the enzyme that

showed the strongest effect on IFN-b

production. We next examined the

involvement of RAB2B in a DNA-

induced innate immune response in

primary MEFs stably expressing short

hairpin RNA (shRNA) against RAB2B or

control shRNA. Knockdown of Rab2b

mRNA inhibited production of IFN-b

and CXCL10 induced by interferon-

stimulatory DNA (ISD), poly(dI:dC), and
cGAMP (Figure 1B; Figures S1 and S2A). Knockdown of

Rab2b mRNA inhibited upregulation of Ifnb1 and Cxcl10 mRNA

by ISD (Figure 1C; Figure S2B). However, knockdown of Rab2b

mRNA did not affect the innate immune response induced by

RNA, such as high- and low-molecular-weight poly(rI:rC) (Fig-

ures 1B and 1C; Figures S2A and S2B). These findings indicate

that RAB2B promotes DNA-induced immune responses.

GTP-Binding Activity of RAB2B Is Involved in DNA-
Induced Immune Responses
Rab GTPases cycle between a GTP-bound active form and

a guanosine diphosphate (GDP)-bound negative form and

function as molecular switches (Stenmark, 2009). Therefore,

we examined the importance of the GTP-binding activity of

RAB2B in regulating DNA-induced immune responses. Constitu-

tively active RAB2B (Q65L) colocalized with STING (Figures 2A

and 2B). However, constitutively negative RAB2B (S20N) did

not localize on membrane-bound compartments or colocalize

with STING (Figures 2A and 2B). Consistent with this, the spatial

approximation of STING to constitutively active RAB2B, but not

constitutively negative RAB2B, occurred after DNA stimulation

(Figures 2C and 2D). Furthermore, complementation of constitu-

tively active RAB2B, but not constitutively negative RAB2B, pro-

moted IFN-b production induced by ISD in MEFs expressing

shRNA that targeted the 30 UTR of Rab2b mRNA (Figure 2E).

These findings indicated that RAB2B regulation of STING-medi-

ated innate immune responses was dependent on its GTP-bind-

ing activity.
20, 2944–2954, September 19, 2017 2945
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Figure 2. GTP-Binding Activity of RAB2B Is Required for a DNA-Induced Innate Immune Response

(A and B) Primary MEFs stably expressing shRNA against RAB2B, together with STING-FLAG and constitutively active MYC-RAB2B or constitutively negative

MYC-RAB2B, were established by retroviral transduction and transfected with ISD. Colocalization of MYC-RAB2B and STING-FLAG was observed under a

confocal laser-scanning microscope and fluorescence microscope (A) (scale bars, 10 mm). The frequency of colocalization of MYC-RAB2B with STING-FLAG in

ISD-stimulated MEFs was determined (B). The graph shows means ± SD (n = 3); *p < 0.01.

(C and D) Proximity-ligation assay (PLA) of MYC-RAB2B and STING-FLAG in primary MEFs stably expressing shRNA against RAB2B, together with STING-FLAG

and constitutively active MYC-RAB2B or constitutively negative MYC-RAB2B, after stimulation with ISD (C) (scale bars, 10 mm). The frequency of cells with

proximity ligation-positive signals was determined (D). The graph shows means ± SD (n = 3); *p < 0.01.

(E) PrimaryMEFs stably expressing the indicated shRNAs, together with constitutively active RAB2B or constitutively negative RAB2B, were transfectedwith ISD.

The levels of IFN-b in the supernatants were measured by ELISA. The results shown are means ± SD (n = 3); *p < 0.01.
The RAB2B-GARIL5 Complex Regulates DNA-Induced
Innate Immune Responses
RabGTPases perform their regulatory function by recruiting spe-

cific effector molecules. Golgi-associated RAB2B interactor

(GARI) was identified as a candidate effector molecule of

RAB2B (Fukuda et al., 2008). In addition to GARI, GARI-like 1
2946 Cell Reports 20, 2944–2954, September 19, 2017
(GARIL1), GARIL2, GARIL3, GARIL4, and GARIL5 each harbor

a putative RAB2B-binding domain (Fukuda et al., 2008). Thus,

we examined the role of GARI family members in DNA-induced

RAB2B-mediated responses. Knockdown of GARIL5 mRNA,

but not of other GARI family members, inhibited interferon-

stimulated response element (ISRE)-dependent transcriptional
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Figure 3. GARIL5 Regulates DNA-Induced

Innate Immune Responses

(A) HEK293 cells treated with the indicated siRNAs

were transfected with the STING expression vec-

tor along with pISRE-Luc and pRL-TK. The cell

lysates were examined for ISRE-dependent tran-

scriptional activity using a luciferase assay. The

results shown are means ± SD (n = 3); *p < 0.01.

(B) HEK293 cells were transfected with the

FLAG-GARIL5 expression vector together with

the wild-type MYC-RAB2A or wild-type MYC-

RAB2B expression vector. Whole-cell lysates

were immunoprecipitated and immunoblotted

with the indicated antibodies.

(C) HEK293 cells were transfected with the FLAG-

GARIL5 expression vector together with the

constitutively active MYC-RAB2B or constitutively

negative MYC-RAB2B expression vector. Whole-

cell lysates were immunoprecipitated and im-

munoblotted with the indicated antibodies.

(D) Primary MEFs stably expressing the indicated

proteins were established by retroviral trans-

duction and transfected with ISD. Whole-cell

lysates were immunoprecipitated and immuno-

blotted with the indicated antibodies.

(E) Primary MEFs stably expressing the indicated

shRNAs were stimulated with the indicated li-

gands (500 ng/mL or 1,000 ng/mL) for 24 hr. The

levels of IFN-b in the supernatants were measured

by ELISA. The results shown are means ± SD

(n = 3); *p < 0.01.

(F) Primary MEFs stably expressing the indicated

shRNAs were stimulated with the indicated li-

gands for 6 hr. The levels of Ifnb1 mRNA were

measured by real-time qPCR. The results shown

are means ± SD (n = 3); *p < 0.01.
activation induced by ectopic expression of STING (Figure 3A).

Immunoprecipitation followed by immunoblot analysis showed

that GARIL5 interacted with RAB2B but not RAB2A (Fig-

ure 3B). GARIL5 interacted with constitutively active RAB2B

but not constitutively negative RAB2B (Figure 3C). Furthermore,

GARIL5 interacted with wild-type RAB2B regardless of ISD stim-

ulation (Figure 3D). Knockdown of Garil5 mRNA inhibited pro-

duction of IFN-b and CXCL10 induced by ISD, poly(dI:dC), and

cGAMP but not poly(rI:rC) (Figure 3E; Figures S1 and S3A).

Knockdown of Garil5 mRNA also inhibited upregulation of

Ifnb1 andCxcl10mRNA by ISD but not poly(rI:rC) (Figure 3F; Fig-

ure S3B). These findings indicated that GARIL5 binds to the

GTP-bound active form of RAB2B and regulates DNA-induced

IFN responses.

The RAB2B-GARIL5 Complex Regulates the
Phosphorylation of IRF3
The translocation of STING from the ER to the Golgi apparatus

facilitates cGAS-STING signaling (Ishikawa et al., 2009; Saitoh

et al., 2009). Therefore, we examined whether RAB2B and

GARIL5 regulate STING trafficking. STING moved from the ER
Cell Reports
to the Golgi apparatus 1 hr after stimula-

tion with 5,6-dimethylxanthenone-4-ace-

tic acid (DMXAA), a direct activator of
mouse STING. Knockdown of Rab2b or Garil5 mRNA did not

inhibit DMXAA-induced STING trafficking (Figures 4A and 4B).

However, knockdown of Rab2b or Garil5 mRNA inhibited upre-

gulation of Ifnb1 mRNA by DMXAA (Figure 4C). These findings

suggest that RAB2B and GARIL5 do not regulate STING traf-

ficking; rather, they function downstream of STING on the Golgi

apparatus.

After recruitment to ligand-binding STING, TBK1 phosphory-

lates itself and STING to facilitate the activation of IRF3 (Liu

et al., 2015). Thus, we assessed the involvement of RAB2B

and GARIL5 in the spatial regulation of phospho-TBK1 and

phosphorylation of STING. Knockdown of Rab2b or Garil5

mRNA did not inhibit colocalization of STING with phosphory-

lated TBK1 (Figures 4D and 4E). Furthermore, knockdown of

Rab2b or Garil5 mRNA did not inhibit phosphorylation of STING

(Figure 4F). We next examined whether RAB2B and GARIL5

regulate the association of IRF3with STING and phosphorylation

of IRF3 by TBK1. We utilized a well-established experimental

system that enabled detection of the complex containing STING

and IRF3 (Liu et al., 2015). Consistent with previous data, retro-

virally transduced IRF3 containing the substitutions S385A and
20, 2944–2954, September 19, 2017 2947
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Figure 4. The RAB2B-GARIL5 Complex Regulates the Phosphorylation of IRF3

(A and B) Primary MEFs stably expressing the indicated shRNAs were established by retroviral transduction and stimulated with DMXAA (100 mg/mL) for 1 hr.

Colocalization of endogenous STING and GM130 was observed under a fluorescence microscope (A) (scale bars, 10 mm). The frequency of colocalization of

endogenous STING with GM130 in DMXAA-stimulated MEFs was determined (B). The graph shows means ± SD (n = 3); *p < 0.01.

(C) Primary MEFs stably expressing the indicated shRNAs were stimulated with ISD (1000 ng/mL) or DMXAA (100 mg/mL) for 1 hr. The levels of Ifnb1mRNA were

measured by real-time qPCR. The results shown are means ± SD (n = 3); *p < 0.01.

(D and E) PrimaryMEFs stably expressing the indicated shRNAs, together with STING-FLAG, were stimulated with DMXAA (100 mg/ml) for 1 hr. The localization of

phosphorylated TBK1 and STING-FLAGwas observedwith a fluorescencemicroscope (D) (scale bars, 10 mm). The frequency of colocalization of phosphorylated

TBK1 with STING-FLAG in DMXAA-stimulated MEFs was determined (E). The graph represents means ± SD (n = 3); *p < 0.01.

(F) Primary MEFs stably expressing the indicated shRNAs were stimulated with ISD (1000 ng/mL) for 1 hr. Whole-cell lysates were subjected to immunoblot

analysis using anti-phospho STING, anti-STING, and anti-b-actin.

(G) Primary MEFs stably expressing the indicated shRNAs, together with STING-MYC and FLAG-IRF3-S385A/S386A, were stimulated with ISD (1000 ng/mL) for

1 hr. Whole-cell lysates were immunoprecipitated and immunoblotted with the indicated antibodies.

(H) Primary MEFs stably expressing the indicated shRNAs were stimulated with ISD (1000 ng/mL) or poly(rI:rC) (1000 ng/mL) for 1 hr. Whole-cell lysates were

subjected to immunoblot analysis using anti-phospho IRF3, anti-IRF3, anti-phospho TBK1, anti-TBK1, and anti-b-actin.
S386A associated with STING after ISD stimulation (Figure 4G).

Knockdown of Rab2b or Garil5 did not inhibit interactions be-

tween STING and IRF3-S385A/S386A (Figure 4G). On the other
2948 Cell Reports 20, 2944–2954, September 19, 2017
hand, knockdown of Rab2b or Garil5mRNA inhibited phosphor-

ylation of IRF3 by ISD but not by double-stranded RNA (dsRNA)

(Figure 4H). These findings indicate that RAB2B and GARIL5



(legend on next page)
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regulate phosphorylation of IRF3 by TBK1 through an unknown

mechanism.

RAB2B Promotes Colocalization of GARIL5 with STING
The involvement of GARIL5 in DNA-induced IFN responses

prompted us to examine the subcellular localization of GARIL5.

RAB2B recruited GARIL5 to STING-positive compartments in a

manner that was dependent on RAB2B GTP-binding activity

(Figures 5A and 5B). Consistent with this, the GTP-binding activ-

ity of RAB2B promoted spatial approximation of GFP-GARIL5

and STING-FLAG (Figures 5C and 5D). Furthermore, GARIL5

also colocalized with a GM130-positive Golgi apparatus in a

RAB2B GTPase-dependent manner (Figures 5E and 5F). These

findings indicate that RAB2B recruits GARIL5 to modulate

STING-triggered signaling.

RAB2B and GARIL5 Are Involved in Antiviral Responses
to DNA Viruses
Because the cGAS-STING signaling axis contributes to the

establishment of an antiviral state against DNA viruses (Li

et al., 2013; Schoggins et al., 2014), we examined the possible

involvement of RAB2B and GARIL5 in antiviral responses to

DNA viruses. Knockdown of Rab2b or Garil5 mRNA inhibited

transcription of Ifnb1 and Cxcl10 induced by the modified

vaccinia virus Ankara strain (MVA) (Figures 6A and 6B). Knock-

down of Rab2b or Garil5 mRNA also inhibited production of

IFN-b induced by baculovirus, which triggers the cGAS-STING

signaling axis (Figure S4; Ono et al., 2014). However, knockdown

of Rab2b orGaril5mRNA did not affect transcription of Ifnb1 and

Cxcl10 induced by encephalomyocarditis virus (EMCV), an RNA

virus that is recognized by MDA5 (Figures 6A and 6B; Kato et al.,

2006). Consistent with this, knockdown of Rab2b or Garil5

mRNA greatly enhanced the replication efficiency of MVA (Fig-

ures 6C–6F). However, knockdown of Rab2b or Garil5 mRNA

did not affect the replication efficiency of EMCV (Figures 6C

and 6E). These findings indicate that the RAB2B-GARIL5 com-

plex promotes IFN-dependent antiviral responses to DNA vi-

ruses that are recognized by cGAS.

DISCUSSION

In the present study, we showed that the RAB2B-GARIL5 com-

plex promotes double-stranded DNA (dsDNA)-induced antiviral

innate immune responses by regulating phosphorylation of

IRF3 by TBK1. However, how the RAB2B-GARIL5 complex facil-

itates the phosphorylation of IRF3 by TBK1 has not been
Figure 5. The GTP-Binding Activity of RAB2B Promotes Spatial Approx

(A and B) Primary MEFs stably expressing shRNA against RAB2B, together

constitutively negative MYC-RAB2B, were established by retroviral transduction

MYC-RAB2Bwas observed under a confocal laser-scanningmicroscope and fluo

GFP-GARIL5 with STING-FLAG in ISD-stimulated MEFs was determined (B). The

(C and D) PLA of GFP-GARIL5 and STING-FLAG in primary MEFs stably expre

constitutively active MYC-RAB2B or constitutively negative MYC-RAB2B, after st

ligation-positive signals was determined (D). The graph shows means ± SD (n =

(E and F) Primary MEFs stably expressing shRNA against RAB2B, together with

MYC-RAB2B, were transfected with ISD. The localization of GFP-GARIL5 and G

rescencemicroscope (E) (scale bars, 10 mm). The frequency of colocalization of GF

shows means ± SD (n = 3); *p < 0.01.
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completely elucidated. The RAB2B-GARIL5 complex colocal-

izes with STING on the Golgi apparatus, and neither RAB2B

nor GARIL5 interacts with STING, TBK1, or IRF3 (data not

shown). Hence, the RAB2B-GARIL5 complex indirectly pro-

motes dsDNA-induced phosphorylation of IRF3 by TBK1 by

recruiting an additional positive regulator of STING on the Golgi

apparatus. The molecular functions of RAB2B-binding GARI

family members remain unknown at present. Because GARI

family members are involved in antiviral innate immune re-

sponses and maintenance of Golgi morphology (Aizawa and Fu-

kuda, 2015), their targets and mode of action should be clarified.

In future studies, we will address these points to increase our un-

derstanding of RAB2B-dependent biological processes that

occur on the Golgi apparatus.

The mechanism contributing to STING trafficking is still un-

clear. Although the RAB2B-GARIL5 complex promotes STING-

dependent IFN responses, it is not involved in STING trafficking.

RAB1A, RAB1B, and RAB2A are known to be involved in ER-to-

Golgi trafficking. However, knockdown of RAB1A, RAB1B, or

RAB2A does not affect the production of IFN-b induced by

dsDNA (Figure 1A). Hence, these RabGTPases might compen-

sate for each other in driving ER-to-Golgi trafficking of STING.

Alternatively, an unconventional trafficking system that does

not depend on these Rab GTPases might drive STING traf-

ficking. It would be important to clarify the precise mechanism

of STING trafficking for a better understanding of cytosolic

DNA-induced innate immune responses.

It has become clear that organelles play pivotal roles in signal

transduction from nucleic acid-sensing PRRs. As shown in the

present study, cGAS and its downstream regulator STING utilize

the Golgi apparatus for signal transduction. RIG-I-like receptors

detect cytosolic RNA and mediate this signal with an adaptor

protein, IPS-1 (also known as MAVS/VISA/CARDIF), which is ex-

pressed onmitochondria (Kawai et al., 2005; Seth et al., 2005; Xu

et al., 2005). Importantly, Rab family members regulate multiple

events that occur on organelles. Although we showed that

RAB2B regulates cytosolic DNA-induced innate immune re-

sponses, Rab family members capable of regulating cytosolic

RNA-induced innate immune responses have not been identi-

fied. Therefore, the role of Rab GTPases in signal transduction

from these nucleic acid-sensing PRRs must be clarified in future

studies.

Pathogenic microorganisms have evolved to counteract host

defenses. In particular, many viruses can suppress expression

of type I IFN and IFN-stimulated genes. Influenza A virus NS1 in-

teracts with RIG-I and disrupts RIG-I-triggered IFN responses
imation of GARIL5 and STING

with GFP-GARIL5, STING-FLAG, and constitutively active MYC-RAB2B or

and transfected with ISD. The localization of GFP-GARIL5, STING-FLAG, and

rescencemicroscope (A) (scale bars, 10 mm). The frequency of colocalization of

graph represents means ± SD (n = 3); *p < 0.01.

ssing shRNA against RAB2B, together with GFP-GARIL5, STING-FLAG, and

imulation with ISD (C) (scale bars, 10 mm). The frequency of cells with proximity

3); *p < 0.01.

GFP-GARIL5 and constitutively active MYC-RAB2B or constitutively negative

M130 was observed under a confocal laser-scanning microscope and fluo-

P-GARIL5 with GM130 in ISD-stimulatedMEFs was determined (F). The graph
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Figure 6. RAB2B and GARIL5 Limit Replica-

tion of Vaccinia Virus by Promoting the

cGAS-STING Signaling Axis

(A) Primary MEFs stably expressing the indicated

shRNAs were established by retroviral trans-

duction and infected with vaccinia virus (MOI = 1)

or EMCV (MOI = 0.02). The levels of Ifnb1 and

Cxcl10 mRNA were determined by real-time

qPCR. The results shown are means ± SD (n = 3);

*p < 0.01.

(B) Primary MEFs stably expressing the indicated

shRNAswere infectedwith vaccinia virus (MOI = 1)

or EMCV (MOI = 0.02). The levels of Ifnb1 and

Cxcl10 mRNA were determined by real-time

qPCR. The results shown are means ± SD (n = 3);

*p < 0.01.

(C) Primary MEFs stably expressing the indicated

shRNAswere infectedwith vaccinia virus (MOI = 1)

or EMCV (MOI = 0.02). The viral titers in the culture

supernatants were determined by TCID50 assay.

The results shown are means ± SD (n = 3);

*p < 0.01.

(D) Primary MEFs stably expressing the indicated

shRNAs were infected with vaccinia virus (MOI =

1). Whole-cell lysates were subjected to immu-

noblot analysis using anti-MVA antibody.

(E) Primary MEFs stably expressing the indicated

shRNAswere infectedwith vaccinia virus (MOI = 1)

or EMCV (MOI = 0.02). The viral titers in the culture

supernatants were determined by TCID50 assay.

The results shown are means ± SD (n = 3);

*p < 0.01.

(F) Primary MEFs stably expressing the indi-

cated shRNAs were infected with vaccinia virus

(MOI = 1). Whole-cell lysates were subjected to

immunoblot analysis using anti-MVA antibody.
(Pichlmair et al., 2006; Mibayashi et al., 2007). Hepatitis C virus

NS3-4A induces degradation of IPS-1 to shut down the RIG-I-

IPS-1 signaling axis (Li et al., 2005; Meylan et al., 2005). Human

herpesvirus-8 interferon regulatory factor (IRF) competes with

IRF3 to bind to the promoters of type I IFN and IFN-stimulated

genes (Burýsek et al., 1999). Hence, disruption of the cGAS-

STING signaling axis by DNA viruses has been speculated.

Because vaccinia virus encodes proteins that suppress the

expression of type I IFN and IFN-stimulated genes (Smith

et al., 2001), it would be interesting to assess whether vaccinia

virus proteins target RAB2B and GARIL5 to disrupt the cGAS-

STING signaling axis.

EXPERIMENTAL PROCEDURES

Reagents

ISD, cGAMP, high-molecular-weight poly(rI:rC), and low-molecular-weight poly

(rI:rC) were purchased from InvivoGen. Poly(dI:dC) was purchased from Sigma.

The ELISA kit used to detectmouse IFN-bwas purchased fromPBLBiomedical

Laboratories. TheELISA kit to identifymouseCXCL10waspurchased fromR&D

Systems. The following commercial antibodies were used: anti-IRF3 (4302, Cell

Signaling Technology), anti-phospho-IRF3 (Ser396) (4947, Cell Signaling Tech-
Cell Reports
nology), anti-STING (3337, Cell Signaling Tech-

nology; 19851-1-AP, Proteintech), anti-phospho-

STING (Ser366) (85735,Cell Signaling Technology),
anti-TBK1 (ab40676, Abcam), anti-phospho-TBK1 (5483, Cell Signaling Tech-

nology), anti-GM130 (610822, BD Biosciences), anti-FLAG (F1804, Sigma),

horseradish peroxidase (HRP)-labeled anti-FLAG (A8592, Sigma), anti-MYC

(A190-103A, Bethyl Laboratories), HRP-labeled anti-MYC (#2040, Cell

Signaling), HRP-labeled b-actin (sc-1615, Santa Cruz Biotechnology), HRP-

labeled anti-rabbit IgG (GEHealthcare), Alexa Fluor 488-conjugated anti-mouse

immunoglobulin G (IgG) (A11029, Life Technologies), Alexa Fluor 488-conju-

gatedanti-chicken IgG (A11039, LifeTechnologies), AlexaFluor568-conjugated

anti-mouse IgG (A11031, Life Technologies), Alexa Fluor 568-conjugated anti-

chicken IgG (A11041, Life Technologies), and Alexa Fluor 647-conjugated

anti-mouse IgG (A21236, Life Technologies). CanGet Signal Immunostain Solu-

tion A was purchased from Toyobo. An siRNA library targeting mouse Rab

GTPase family members was synthesized at Nippon EGT (Matsui and Fukuda,

2013). Unless otherwise noted, reagents were purchased from Nacalai Tesque.

Cells and Viruses

Primary MEFs were prepared from pregnant female mice on embryonic day

13.5 as described previously (Kato et al., 2006). Immortalized wild-type

MEFs and HEK293 cells were characterized previously (Saitoh et al., 2009).

Plat-E cells (Morita et al., 2000) were kindly donated by Dr. T. Kitamura (The

University of Tokyo). Cells were cultured in DMEM supplemented with 10%

fetal calf serum (Life Technologies) in a 5% CO2 incubator. Modified vaccinia

virus Ankara strain was purchased from the American Type Culture Collection.

EMCV and baculovirus have been described previously (Kato et al., 2006; Ono
20, 2944–2954, September 19, 2017 2951



et al., 2014). The viral titers were determined with 50% tissue culture infectious

dose (TCID50) assays as described previously (Saitoh et al., 2009).

Plasmids

The reporter plasmids pISRE-LucandpRL-TKwere purchased fromStratagene

and Promega, respectively. The retroviral cDNA expression plasmids pMRX-

ires-puro and pMRX-ires-bsr were kindly donated by Dr. S. Yamaoka (Tokyo

Medical and Dental University), and the previously characterized plasmid

pcDNA3 STING-MYC was used (Saitoh et al., 2009). Complementary DNA en-

coding RAB2A was inserted into pcDNA3-MYC-MCS, generating pcDNA-

MYC-RAB2A. Complementary DNA encoding RAB2B was inserted into

pcDNA3-MYC-MCS and pMRX-MYC-MCS-ires-puro, generating pcDNA-

MYC-RAB2B and pMRX-MYC-RAB2B-ires-puro, respectively. Plasmids

derived from pEGFP-C1 encoding constitutively active and constitutively nega-

tivemutantsofRAB2Bweredescribedpreviously (Fukudaet al., 2008).Comple-

mentary DNA encoding GARIL5 was inserted into pcDNA3-FLAG-MCS and

pMRX-GFP-MCS-ires-puro, generating pcDNA3-FLAG-GARIL5 and pMRX-

GFP-GARIL5-ires-puro, respectively. FLAG-tagged STING was inserted into

pMRX-ires-bsr, generating pMRX-STING-FLAG-ires-bsr. The retroviral shRNA

expression plasmid pSuper-retro-puro was characterized in an earlier report

(Saitoh et al., 2006). Complementary DNA sequences inserted immediately

downstream of the H1 promoter of pSuper-retro-puro were as follows (only

the sense strand sequence is shown): specific to RAB2B, 50-GTCA

TGTCTCCTCCTTCAG-30 and 50- GTGATTTCATTGCGTGTAT-30; specific to

GARIL5, 50-GACTCAGACAAGATCCTTC-30 and 50-GTAAAGTCACAAGCTC

TAG-30; an unrelated control was used (Misawa et al., 2013).

Real-Time qPCR

Total RNA was isolated using an RNAMicroprep kit according to the manufac-

turer’s instructions (ZymoResearch). Reverse transcriptionwas performed us-

ing ReverTra Ace in accordance with themanufacturer’s instructions (Toyobo).

For quantitative PCR, cDNA fragments were amplified with Real-Time PCR

Master Mix in accordance with the manufacturer’s instructions (Toyobo). Fluo-

rescence from the TaqMan probe was detected using a 7500 Real-Time PCR

System (Applied Biosystems), and the expression levels of Ifnb, Cxcl10,

Rab2b, and Garil5 mRNA were normalized to that of Actb mRNA.

ELISA

The levels of IFN-b and CXCL10 in culture supernatants were measured using

an ELISA in accordance with the manufacturer’s instructions.

Immunocytochemistry

Cells cultured on coverslips were fixed with 3% paraformaldehyde and then

processed for immunocytochemistry as described previously (Saitoh et al.,

2012). Samples were examined with an LSM 780 confocal laser-scanning mi-

croscope (Carl Zeiss) and a DMI6000B fluorescence microscope (Leica

Microsystems).

Immunoblotting

Cells were washed with ice-cold PBS and then lysed in lysis buffer (1% Non-

idet P-40, 50 mM Tris-HCl [pH 7.4], and 150 mM NaCl) supplemented with a

complete protease inhibitor cocktail tablet (Roche) and a phosphatase inhibi-

tor cocktail tablet (Roche). Cell lysates were incubated for 15 min at 4�C and

then centrifuged at 14,0003 g for 15min at 4�C. The supernatants were boiled

in 2-mercaptoethanol-containing sample buffer, subjected to SDS-PAGE, and

transferred to polyvinylidene difluoride membrane (Millipore). The membranes

were then blocked with Tris-buffered saline containing 20 mM Tris-HCl

(pH 7.4), 135 mM NaCl, 0.05% Tween 20, and 5% skim milk and incubated

with primary antibody at room temperature for 1 hr or overnight at 4�C and

then with HRP-conjugated secondary antibody at room temperature for 1 hr.

The immune complexes and cell lysates were visualized using the Luminata

Forte Western HRP Substrate (Millipore), ImageQuant LAS-4000 (GE Health-

care), and FUSION-Solo 7S (Vilber-Lourmat).

Immunoprecipitation

HEK293 cells seeded on 100-mmdisheswere transiently transfectedwith a to-

tal of 10 mg of various plasmids. 24 hr after transfection, the cells were lysed in
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lysis buffer and centrifuged at 14,0003 g for 15 min at 4�C. The supernatants

were incubated with antibody for 1 hr at 4�C, and protein G-Sepharose 4B Fast

Flow beads (GE Healthcare) were added. After 1 hr of incubation at 4�C, the
beads were washed four times with lysis buffer. The immunoprecipitates

were boiled in sample buffer and subjected to SDS-PAGE. The immunoprecip-

itation assay for STING-IRF3 interactions was performed as described previ-

ously (Liu et al., 2015).

Reporter Assay

HEK293 cells plated on 24-well plates were transfected with the indicated

siRNAs and then transiently transfected with 90 ng of pISRE-Luc, 10 ng of

pRL-TK, and 400 ng of expression plasmid by Lipofectamine 2000 transfection

reagent (Life Technologies). 24 hr after transfection, luciferase activities in total

cell lysates were measured using the Dual-Luciferase Reporter Assay System

(Promega).

In Situ Proximity Ligation Assay

In situ proximity ligation assays were performed using a Duolink In Situ PLA Kit

(Olink Bioscience) according to the manufacturer’s instructions. In brief, MEFs

expressing the indicated genes were transfected with ISD, fixed, and then per-

meabilized with digitonin. The cells were incubated with primary antibodies in

antibody buffer for 1 hr at 37�C and then washed in wash buffer A. Next, the

cells were incubated with proximity ligation assay (PLA) probes from Duolink,

anti-mouse PLAMINUS and anti-rabbit PLA PLUS, in antibody buffer for 1 hr at

37�C and then washed in wash buffer A. Thereafter, the ligation reagent was

added to the cells and incubated for 30 min at 37�C, followed by washing in

wash buffer A. For amplification, the cells were incubated with amplification

polymerase solution for 100 min at 37�C and washed in wash buffer B. After

the final wash in 0.013 wash buffer B for 1 min, the cells were mounted with

phalloidin and Hoechst 33342 to stain actin filaments and nuclei, respectively.

Samples were examined with an LSM 780 confocal laser-scanning micro-

scope and a DMI6000B fluorescence microscope.

Statistical Analysis

Student’s t test or ANOVA plus post hoc Tukey test was used to determine sta-

tistical significance. A p value of < 0.05 was considered significant.
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