8 research outputs found

    Variable Expressivity of Wolfram Syndrome in a Family with Multiple Affected Subjects

    Get PDF
    Purpose: To study the genetic basis and clinical manifestations of Wolfram syndrome in a multi-affected family. Methods: Complete clinical examinations including urological, ophthalmic, neurological, and endocrinologic assessment were performed for three affected family members. Genomic DNA was extracted from peripheral blood leukocytes with salting out method and all WFS1 exons and their flanking regions were sequenced. Candidate variation was screened for segregation in the pedigree by Sanger sequencing. Results: A known pathogenic missense mutation in WFS1 gene (c.1885C>T which leads to p.Arg629Trp in the encoded protein) was identified in all affected individuals. Both clinical and genetic investigations confirmed Wolfram syndrome diagnosis with variable phenotypic features. Conclusion: Identical mutations in the Wolfram syndrome causative gene can lead to variable manifestations of the syndrome even in the same family. Although the medical findings and clinical examination are imperative for the diagnosis of Wolfram syndrome, genetic testing is useful to confirm the diagnosis, especially in cases with possible reduced penetrance of the characteristic signs

    Triple combination of heat, drug and radiation using alginate hydrogel co-loaded with gold nanoparticles and cisplatin for locally synergistic cancer therapy

    No full text
    Although multimodal cancer therapy has shown superior antitumor efficacy in comparison to individual therapy due to the potential generation of synergistic interactions among the treatments, its clinical usage is highly hampered by systemic dose-limiting toxicities. Herein, we developed a multi-responsive nanocomplex constructed from alginate hydrogel co-loaded with cisplatin and gold nanoparticles (AuNPs) (abbreviated as ACA) to combine chemotherapy, radiotherapy (RT) and photothermal therapy. The nanocomplex markedly improved the efficiency of drug delivery where ACA resulted in noticeably higher tumor growth inhibition than free cisplatin. The tumor treated with ACA showed an increased heating rate upon 532 nm laser irradiation, indicating the photothermal conversion ability of the nanocomplex. While RT alone resulted in slight tumor growth inhibition, thermo-chemo therapy, chemoradiation therapy and thermo-radio therapy using ACA dramatically slowed down the rate of tumor growth. Upon 532 nm laser and 6 MV X-ray, the nanocomplex could enable a trimodal thermo-chemo-radio therapy that yielded complete tumor regression with no evidence of relapse during the 90-days follow up period. The results of this study demonstrated that the incorporation of AuNPs and cisplatin into alginate hydrogel network can effectively combine chemotherapy, RT and photothermal therapy to achieve a locally synergistic cancer therapy. (C) 2020 Elsevier B.V. All rights reserved

    Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy

    No full text
    Multimodal cancer therapy has become a new trend in clinical oncology due to potential generation of synergistic therapeutic effects. Herein, we propose a multifunctional nanoplatform comprising alginate hydrogel co-loaded with cisplatin and gold nanoparticles (abbreviated as ACA) for triple combination of photothermal therapy, chemotherapy and radiotherapy (thermo-chemo-radio therapy). The therapeutic potential of ACA was assessed in combination with 532 nm laser and 6 MV X-ray against KB human mouth epidermal carcinoma cells. The results demonstrated that tri-modal thermo-chemo-radio therapy using ACA induced a superior anticancer efficacy than mono- or bi-modality treatments. The intracellular reactive oxygen species (ROS) level in KB cells treated with tri-modal therapy was increased by 4.4-fold compared to untreated cells. The gene expression analysis demonstrated the up-regulation of Box pro-apoptotic factor (by 4.5-fold) and the down-regulation of Bcl-2 anti-apoptotic factor (by 0.3-fold). The massive cell injury and the appearance of morphological characteristics of apoptosis were also evident in the micrograph of KB cells caused by thermo-chemo-radio therapy. Therefore, ACA nanocomplex can be offered as a promising platform to combine photothermal therapy, chemotherapy and radiotherapy, thereby affording an opportunity for combating chemo- and radio-resistant tumors
    corecore