136 research outputs found

    Identification of Nonlinear Systems Using the Hammerstein-Wiener Model with Improved Orthogonal Functions

    Get PDF
    Hammerstein-Wiener systems present a structure consisting of three serial cascade blocks. Two are static nonlinearities, which can be described with nonlinear functions. The third block represents a linear dynamic component placed between the first two blocks. Some of the common linear model structures include a rational-type transfer function, orthogonal rational functions (ORF), finite impulse response (FIR), autoregressive with extra input (ARX), autoregressive moving average with exogenous inputs model (ARMAX), and output-error (O-E) model structure. This paper presents a new structure, and a new improvement is proposed, which is consisted of the basic structure of Hammerstein-Wiener models with an improved orthogonal function of Müntz-Legendre type. We present an extension of generalised Malmquist polynomials that represent Müntz polynomials. Also, a detailed mathematical background for performing improved almost orthogonal polynomials, in combination with Hammerstein-Wiener models, is proposed. The proposed approach is used to identify the strongly nonlinear hydraulic system via the transfer function. To compare the results obtained, well-known orthogonal functions of the Legendre, Chebyshev, and Laguerre types are exploited

    Neural Network Based on Orthogonal Polynomials Applied in Magnetic Levitation System Control

    No full text
    This paper presents a new approach for improving performances of magnetic levitation system. Controlled parameter is the amplitude which levitated object achieves during movement from one levitation position to another. Two position levitation with improved amplitude performances is obtained by implementing orthogonal neural network in standard levitation control logic. Proposed network is a nonlinear autoregressive neural network with newly developed activation function based on orthogonal polynomials. Performed experiments on a system with default control logic showed that it could not provide stable two position levitation when specified amplitude of the levitation object is greater than 10-4 m. Artificial network was trained using real experimental data and it was based on standard tangent and sigmoid activation functions. Default activation functions were then substituted with a newly developed orthogonal polynomial functions. The amplitude 10-3 m was achieved with stable two position levitation after parameter optimization. It is proven that simple control logic with nonlinear autoregressive neural network and proper activation function can provide improved amplitude performances

    Wood resource management using an endocrine NARX neural network

    No full text
    Planning and forecasting wood resources implies a challenging analysis, which has a direct impact on planning human resources, production timeline, as well as stock management of wooden assortments, which requires a complex data analysis taking into account all inputs that define the yield of wooden material. This paper includes an analysis of monthly time series data from 1991 to 2015 which can be characterized as long time dependence data. In recent years, artificial neural networks have become a popular tool for time dependence data treatment. Therefore, a prediction of monthly requirements of treated wood is performed by developing a new type of neural network in this research. The nonlinear autoregressive model with exogenous inputs (NARX) is used as a foundation of a new network. NARX is a type of recurrent neural network which is a very effective tool for approximation of any nonlinear function, especially ones which could occur during a nonlinear time sequence prediction. The main contribution of this paper is the introduction of an artificial endocrine factor inside the standard NARX structure. The developed ENARX model provides an extra sensitivity of the network to environmental conditions and external disturbances, as well as its improved adaptive capability. The proposed network shows better forecasting performances compared to the default NARX network, thus establishing itself as an excellent prediction tool in the field of wood science, engineering and technology

    Evidence of a J/ψΛJ/\psi\Lambda structure and observation of excited Ξ\Xi^- states in the ΞbJ/ψΛK\Xi^-_b \to J/\psi\Lambda K^- decay

    No full text
    First evidence of a structure in the J/ψΛJ/\psi{\Lambda} invariant mass distribution is obtained from an amplitude analysis of ΞbJ/ψΛK\Xi_b^-{\rightarrow}J/\psi{\Lambda}K^- decays. The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1σ3.1\sigma including systematic uncertainties and look-elsewhere effect. Its mass and width are determined to be 4458.8±2.91.1+4.74458.8\pm2.9^{+4.7}_{-1.1} MeV and 17.3±6.55.7+8.017.3\pm6.5^{+8.0}_{-5.7} MeV, respectively, where the quoted uncertainties are statistical and systematic. The structure is also consistent with being due to two resonances. In addition, the narrow excited Ξ\Xi^- states, Ξ(1690)\Xi(1690)^- and Ξ(1820)\Xi(1820)^-, are seen for the first time in a Ξb\Xi^-_b decay, and their masses and widths are measured with improved precision. The analysis is performed using pppp collision data corresponding to a total integrated luminosity of 9 fb1^{-1}, collected with the LHCb experiment at centre-of-mass energies of 7, 8 and 13 TeV

    Search for long-lived particles decaying to e±μνe^\pm \mu^\mp \nu

    No full text
    International audienceLong-lived particles decaying to e±μν{e ^\pm } {\mu ^\mp } {\nu } , with masses between 7 and 50GeV/c250 \,\text {GeV/}c^2 and lifetimes between 2 and 50ps50 \,\text {ps} , are searched for by looking at displaced vertices containing electrons and muons of opposite charges. The search is performed using 5.4fb15.4 \,\text {fb} ^{-1} of ppp p collisions collected with the LHCb detector at a centre-of-mass energy of s=13TeV\sqrt{s} = 13 \,\text {TeV} . Three mechanisms of production of long-lived particles are considered: the direct pair production from quark interactions, the pair production from the decay of a Standard-Model-like Higgs boson with a mass of 125GeV/c2125 \,\text {GeV/}c^2 , and the charged current production from an on-shell WW boson with an additional lepton. No evidence of these long-lived states is obtained and upper limits on the production cross-section times branching fraction are set on the different production modes

    Measurement of the charm mixing parameter yCPyCPKπy_{CP} - y_{CP}^{K\pi} using two-body D0D^0 meson decays

    No full text
    International audienceA measurement of the ratios of the effective decay widths of D0→π-π+ and D0→K-K+ decays over that of D0→K-π+ decays is performed with the LHCb experiment using proton–proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. These observables give access to the charm mixing parameters yCPππ-yCPKπ and yCPKK-yCPKπ, and are measured as yCPππ-yCPKπ=(6.57±0.53±0.16)×10-3, yCPKK-yCPKπ=(7.08±0.30±0.14)×10-3, where the first uncertainties are statistical and the second systematic. The combination of the two measurements is yCP-yCPKπ=(6.96±0.26±0.13)×10-3, which is four times more precise than the previous world average

    Measurement of χc1_{c1}(3872) production in proton-proton collisions at s \sqrt{s} = 8 and 13 TeV

    No full text
    International audienceThe production cross-section of the χc1_{c1}(3872) state relative to the ψ(2S) meson is measured using proton-proton collision data collected with the LHCb experiment at centre-of-mass energies of s \sqrt{s} = 8 and 13 TeV, corresponding to integrated luminosities of 2.0 and 5.4 fb1^{−1}, respectively. The two mesons are reconstructed in the J/ψπ+^{+}π^{−} final state. The ratios of the prompt and nonprompt χc1_{c1}(3872) to ψ(2S) production cross-sections are measured as a function of transverse momentum, pT_{T}, and rapidity, y, of the χc1_{c1}(3872) and ψ(2S) states, in the kinematic range 4 < pT_{T}< 20 GeV/c and 2.0 < y < 4.5. The prompt ratio is found to increase with pT_{T}, independently of y. For the prompt component, the double ratio of the χc1_{c1}(3872) and ψ(2S) production cross-sections between 13 and 8 TeV is observed to be consistent with unity, independent of pT_{T} and centre-of-mass energy.[graphic not available: see fulltext

    Search for the rare hadronic decay Bs0ppˉB_s^0\to p \bar{p}

    No full text
    A search for the rare hadronic decay Bs0→pp¯ is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→pp¯)&lt;4.4(5.1)×10-9 at 90% (95%) confidence level; this is currently the world’s best upper limit. The decay mode B0→pp¯ is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→pp¯)=(1.27±0.15±0.05±0.04)×10-8, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π-. The combination of the two LHCb measurements of the B0→pp¯ branching fraction yields B(B0→pp¯)=(1.27±0.13±0.05±0.03)×10-8.A search for the rare hadronic decay Bs0ppˉB_s^0\to p \bar{p} is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb1^{-1}. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0ppˉ)<4.4 (5.1)×109{\cal B}(B_s^0\to p \bar{p}) < 4.4~(5.1) \times 10^{-9} at 90% (95%) confidence level; this is currently the world's best upper limit. The decay mode B0ppˉB^0\to p \bar{p} is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0ppˉ)=(1.27±0.15±0.05±0.04)×108{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0K+πB^0\to K^+\pi^-. The combination of the two LHCb measurements of the B0ppˉB^0\to p \bar{p} branching fraction yields B(B0ppˉ)=(1.27±0.13±0.05±0.03)×108{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.13 \pm 0.05 \pm 0.03) \times 10^{-8}

    Measurement of CP Violation in the Decay B+K+π0B^{+} \rightarrow K^{+} \pi^{0}

    No full text
    International audienceA measurement of CP violation in the decay B+→K+π0 is reported using data corresponding to an integrated luminosity of 5.4  fb-1 collected with the LHCb experiment at a center-of-mass energy of s=13  TeV. The CP asymmetry is measured to be 0.025±0.015±0.006±0.003, where the uncertainties are statistical, systematic, and due to an external input. This is the most precise measurement of this quantity. It confirms and significantly enhances the observed anomalous difference between the direct CP asymmetries of the B+→K+π- and B+→K+π0 decays, known as the Kπ puzzle

    Measurement of the CKM angle γ\gamma and Bs0-Bs0{B}_s^0\hbox{-} {\overline{B}}_s^0 mixing frequency with Bs0Dsh±π±π{B}_s^0\to {D}_s^{\mp }{h}^{\pm }{\pi}^{\pm }{\pi}^{\mp } decays

    No full text
    corecore