1,485 research outputs found

    Towards Understanding The B[e] Phenomenon: IV. Modeling of IRAS 00470+6429

    Full text link
    FS CMa type stars are a recently described group of objects with the B[e] phenomenon that exhibit strong emission-line spectra and strong IR excesses. In this paper we report the first attempt for a detailed modeling of IRAS 00470+6429, for which we have the best set of observations. Our modeling is based on two key assumptions: the star has a main-sequence luminosity for its spectral type (B2) and the circumstellar envelope is bimodal, composed of a slowly outflowing disk-like wind and a fast polar wind. Both outflows are assumed to be purely radial. We adopt a novel approach to describe the dust formation site in the wind that employs timescale arguments for grain condensation and a self-consistent solution for the dust destruction surface. With the above assumptions we were able to reproduce satisfactorily many observational properties of IRAS 00470+6429, including the H line profiles and the overall shape of the spectral energy distribution. Our adopted recipe for dust formation proved successful in reproducing the correct amount of dust formed in the circumstellar envelope. Possible shortcomings of our model, as well as suggestions for future improvements, are discussed.Comment: 11 pages, 7 figures, accepted for publication in The Astrophysical Journa

    The vortex at an inlet of an air intake

    Get PDF
    Vortex at air intake inlet investigated by direct air flow visualization technique

    Fano resonance in two-dimensional optical waveguide arrays with a bi-modal defect

    Full text link
    We study the two-dimensional extension of the Fano-Anderson model on the basis of a two-dimensional optical waveguide array with a bi-modal defect. We demonstrate numerically the persistence of the Fano resonance in wavepacket scattering process by the defect. An analytical approximation is derived for the total scattered light power

    Properties of galactic B[e] supergiants. IV. Hen3-298 and Hen3-303

    Get PDF
    We present the results of optical and near-IR spectroscopic and near-IR photometric observations of the emission-line stars Hen3-298 and Hen3-303. Strong emission in the H-alpha line is found in both objects. The presence of Fe II and [O I] emission lines in the spectrum of Hen3-298 indicates that it is a B[e] star. The double-peaked CO line profiles, found in the infrared spectrum of Hen3-298, along with the optical line profiles suggest that the star is surrounded by a rotating circumstellar disk. Both objects also show infrared excesses, similar to those of B[e] stars. The radial velocities of the absorption and emission lines as well as a high reddening level suggest that the objects are located in the Norma spiral arm at a distance of 3-4.5 kpc. We estimated a luminosity of log (L/L_sun) ~ 5.1 and a spectral type of no earlier than B3 for Hen3-298. Hen3-303 seems to be a less luminous B-type object (log (L/L_sun) ~ 4.3), located in the same spiral arm.Comment: 8 pages, 5 figures, accepted by Astronomy and Astrophysic

    Giant In-Particle Field Concentration and Fano Resonances at Light Scattering by High-Refractive Index Particles

    Full text link
    A detailed analytical inspection of light scattering by a particle with high refractive index m+i\kappa and small dissipative constant \kappa is presented. We have shown that there is a dramatic difference in the behavior of the electromagnetic field within the particle (inner problem) and the scattered field outside it (outer problem). With an increase in m at fix values of the other parameters, the field within the particle asymptotically converges to a periodic function of m. The electric and magnetic type Mie resonances of different orders overlap substantially. It may lead to a giant concentration of the electromagnetic energy within the particle. At the same time, we demonstrate that identical transformations of the solution for the outer problem allow to present each partial scattered wave as a sum of two partitions. One of them corresponds to the m-independent wave, scattered by a perfectly reflecting particle and plays the role of a background, while the other is associated with the excitation of a sharply-m-dependent resonant Mie mode. The interference of the partitions brings about a typical asymmetric Fano profile. The explicit expressions for the parameters of the Fano profile have been obtained "from the first principles" without any additional assumptions and/or fitting. In contrast to the inner problem, at an increase in m the resonant modes of the outer problem die out, and the scattered field converges to the universal, m-independent profile of the perfectly reflecting sphere. Numerical estimates of the discussed effects for a gallium phosphide particle are presented.Comment: 18 pages, 10 figure

    Multi-field approach in mechanics of structural solids

    Get PDF
    We overview the basic concepts, models, and methods related to the multi-field continuum theory of solids with complex structures. The multi-field theory is formulated for structural solids by introducing a macrocell consisting of several primitive cells and, accordingly, by increasing the number of vector fields describing the response of the body to external factors. Using this approach, we obtain several continuum models and explore their essential properties by comparison with the original structural models. Static and dynamical problems as well as the stability problems for structural solids are considered. We demonstrate that the multi-field approach gives a way to obtain families of models that generalize classical ones and are valid not only for long-, but also for short-wavelength deformations of the structural solid. Some examples of application of the multi-field theory and directions for its further development are also discussed.Comment: 25 pages, 18 figure

    AC field induced quantum rectification effect in tunnel junctions

    Full text link
    We study the appearance of directed current in tunnel junctions, quantum ratchet effect, in the presence of an external ac field f(t). The current is established in a one-dimensional discrete inhomogeneous "tight-binding model". By making use of a symmetry analysis we predict the right choice of f(t) and obtain the directed current as a difference between electron transmission coefficients in opposite directions, ΔT=TLR−TRL\Delta T = T^{LR}-T^{RL}. Numerical simulations confirm the predictions of the symmetry analysis and moreover, show that the directed current can be drastically increased by a proper choice of frequency and amplitudes of the ac field f(t).Comment: 4 pages, 3 figures, to be published in Physical Review
    • …
    corecore