19 research outputs found

    INFLUENCE OF SUBSTRATE THICKNESS ON DIFFUSE COPLANAR SURFACE BARRIER DISCHARGE PROPERTIES

    Get PDF
    In presented work the influence of dielectric barrier thickness on the parameters of Diffuse Coplanar Surface Barrier Discharge was investigated. The discharge was operated at atmospheric pressure laboratory air. The electrical parameters of the system were studied both experimentally and using numerical simulations. The discharge pattern was studied as well using intensified CCD camera

    USING DIFFUSE COPLANAR SURFACE BARRIER DISCHARGE FOR IMPROVEMENT OF FELTING PROPERTIES OF ANIMAL FIBRES

    Get PDF
    The Diffuse Coplanar Surface Barrier Discharge (DCSBD) has shown its great potential for applications in textile industry recently1. A rather interesting synthesis of the latest technologies and a very traditional industry is currently being developed in cooperation of our physics department and TONAK - a company with more than 200 years tradition in the hat making from natural felt. This is also covered by international patent WO2011044859: An Apparatus and Method for Improving Felting Properties of Animal Fibres by plasma Treatment

    Magnetic nanoparticles: From Design and Synthesis to Real World Applications

    Get PDF
    The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy

    White paper on the future of plasma science and technology in plastics and textiles

    Get PDF
    International audienceThis white paper considers the future of plasma science and technology related to the manufacturing and modifications of plastics and textiles, summarizing existing efforts and the current state-of-art for major topics related to plasma processing techniques. It draws on the frontier of plasma technologies in order to see beyond and identify the grand challenges which we face in the following 5–10 years. To progress and move the frontier forward, the paper highlights the major enabling technologies and topics related to the design of surfaces, coatings and materials with nonequilibrium plasmas. The aim is to progress the field of plastics and textile production using advanced plasma processing as the key enabling technology which is environmentally friendly, cost-efficient, and offers high-speed processing

    Atmospheric pressure plasma assisted calcination of composite submicron fibers

    No full text
    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance – Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination

    INFLUENCE OF SUBSTRATE THICKNESS ON DIFFUSE COPLANAR SURFACE BARRIER DISCHARGE PROPERTIES

    No full text
    In presented work the influence of dielectric barrier thickness on the parameters of Diffuse Coplanar Surface Barrier Discharge was investigated. The discharge was operated at atmospheric pressure laboratory air. The electrical parameters of the system were studied both experimentally and using numerical simulations. The discharge pattern was studied as well using intensified CCD camera

    Inactivation of Escherichia coli on PTFE surfaces by diffuse coplanar surface barrier discharge

    No full text
    The non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) was tested for decontamination of bacteria Escherichia coli on polymer surfaces. We investigated the optical parameters of DCSBD plasma generated in synthetic air with different relative humidity. Our study was provided to estimate the main plasma components active during the DCSBD plasma degradation of E. coli contamination prepared on polytetrafluoroethylene (PTFE, Teflon) surface, in ambient air at atmospheric pressure. The DCSBD plasma was characterized by means of electrical measurements and optical emission spectroscopy. The inactivation of E. coli bacteria was evaluated by standard microbiological cultivation (CFU plate counting). The experimental results of the germicidal efficiency obtained for short plasma exposure times proved the effectiveness of DCSBD plasma for the polymer surface decontamination

    Enhancement of carbon-steel peel adhesion to rubber blend using atmospheric pressure plasma

    No full text
    The surface of carbon-steel plates was modified by non-equilibrium plasma of diffuse coplanar surface barrier discharge (DCSBD) in order to improve the adhesive properties to the NR (natural rubber) green rubber compound. The effect of different treatment times as well as different input power and frequency of supplied high voltage was investigated. The samples were characterized using contact angle and surface free energy measurement, measurement of adhesive properties, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Surface chemical composition was studied by energy-dispersive X-ray spectroscopy (EDX). Significant increase in wettability was observed even after 2 s of plasma exposure. The surface modification was confirmed also by peel test, where the best results were obtained for 6 s of plasma treatment. In addition the ageing effect was studied to investigate the durability of modification, which is crucial for the industrial applications

    Optimization and influence of multi-hollow surface dielectric barrier discharge plasma operating conditions on the physical quality of peanut

    No full text
    An experiment was conducted to investigate the effects of atmospheric pressure plasma generated by multi-hollow surface dielectric barrier discharges on physical quality of peanut (Arachis Hypogea L). Multi-hollow surface dielectric barrier discharge is a novel plasma device applicable in food industry applications due to the capacity of the generated plasma to treat the surface of food without changing the quality. Response surface methodology was used to optimize the plasma treatment for surface treatment as raw peanut forms over a range of power (10–40 W), air flow rate (0.5–20 L/min) and time (1–15 min). The weight loss, hardness, contact angle, color parameters, microstructure, and sensory quality evaluation were evaluated during plasma treatments and modeled by response surface methodology and compared the means. Second order polynomial model adequately described the plasma treated experimental data except for sensory attributes with an insignificant lack of fit (p > 0.05). The result revealed that extreme conditions caused a decrease in L*,b*, hardness, contact angle, increased weight loss, color change and changed the microstructure of the treated peanuts
    corecore