17 research outputs found

    Human dose response relation for airborne exposure to Coxiella burnetii

    Get PDF
    Background: The recent outbreak of Q fever in the Netherlands between 2007 and 2009 is the largest recorded Q fever outbreak. Exposure to Coxiella burnetii may cause Q fever but the size of the population exposed during the outbreak remained uncertain as little is known of the infectivity of this pathogen. The quantification of the infectiousness and the corresponding response is necessary for assessing the risk to the population. Methods: A human challenge study was published in the 1950s but this study quantified the dose of C. burnetii in relative units. Data from a concurrent guinea pig challenge study were combined with a recent study in which guinea pigs were challenged with a similar aerosol route to quantify human exposure. Concentration estimates for C. burnetii are made jointly with estimates of the dose response parameters in a hierarchical Bayesian framework. Results: The dose for 50% infection (InfD50%) in human subjects is 1.18 bacteria (95% credible interval (CI) 0.76-40.2). The dose for 50% illness (IllD50) in challenged humans is 5.58 (95%CI 0.89-89.0) bacteria. The probability of a single viable C. burnetii causing infection in humans is 0.44 (95%CI 0.044-0.59) and for illness 0.12 (95%CI 0.0006-0.55). Conclusions: To our knowledge this is the first human dose–response model for C. burnetii. The estimated dose response relation demonstrates high infectivity in humans. In many published papers the proportion of infected individuals developing illness is reported to be 40%. Our model shows that the proportion of symptomatic infections may vary with the exposure dose. This implies that presence of these bacteria in the environment, even in small numbers, poses a serious health risk to the population

    Analysis of timeliness of infectious disease reporting in the Netherlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Timely reporting of infectious disease cases to public health authorities is essential to effective public health response. To evaluate the timeliness of reporting to the Dutch Municipal Health Services (MHS), we used as quantitative measures the intervals between onset of symptoms and MHS notification, and between laboratory diagnosis and notification with regard to six notifiable diseases.</p> <p>Methods</p> <p>We retrieved reporting data from June 2003 to December 2008 from the Dutch national notification system for shigellosis, EHEC/STEC infection, typhoid fever, measles, meningococcal disease, and hepatitis A virus (HAV) infection. For each disease, median intervals between date of onset and MHS notification were calculated and compared with the median incubation period. The median interval between date of laboratory diagnosis and MHS notification was similarly analysed. For the year 2008, we also investigated whether timeliness is improved by MHS agreements with physicians and laboratories that allow direct laboratory reporting. Finally, we investigated whether reports made by post, fax, or e-mail were more timely.</p> <p>Results</p> <p>The percentage of infectious diseases reported within one incubation period varied widely, between 0.4% for shigellosis and 90.3% for HAV infection. Not reported within two incubation periods were 97.1% of shigellosis cases, 76.2% of cases of EHEC/STEC infection, 13.3% of meningococcosis cases, 15.7% of measles cases, and 29.7% of typhoid fever cases. A substantial percentage of infectious disease cases was reported more than three days after laboratory diagnosis, varying between 12% for meningococcosis and 42% for shigellosis. MHS which had agreements with physicians and laboratories showed a significantly shorter notification time compared to MHS without such agreements.</p> <p>Conclusions</p> <p>Over the study period, many cases of the six notifiable diseases were not reported within two incubation periods, and many were reported more than three days after laboratory diagnosis. An increase in direct laboratory reporting of diagnoses to MHS would improve timeliness, as would the use of fax rather than post or e-mail. Automated reporting systems have to be explored in the Netherlands. Development of standardised and improved measures for timeliness is needed.</p

    Timeliness of contact tracing among flight passengers for influenza A/H1N1 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During the initial containment phase of influenza A/H1N1 2009, close contacts of cases were traced to provide antiviral prophylaxis within 48 h after exposure and to alert them on signs of disease for early diagnosis and treatment. Passengers seated on the same row, two rows in front or behind a patient infectious for influenza, during a flight of ≥ 4 h were considered close contacts. This study evaluates the timeliness of flight-contact tracing (CT) as performed following national and international CT requests addressed to the Center of Infectious Disease Control (CIb/RIVM), and implemented by the Municipal Health Services of Schiphol Airport.</p> <p>Methods</p> <p>Elapsed days between date of flight arrival and the date passenger lists became available (contact details identified - CI) was used as proxy for timeliness of CT. In a retrospective study, dates of flight arrival, onset of illness, laboratory diagnosis, CT request and identification of contacts details through passenger lists, following CT requests to the RIVM for flights landed at Schiphol Airport were collected and analyzed.</p> <p>Results</p> <p>24 requests for CT were identified. Three of these were declined as over 4 days had elapsed since flight arrival. In 17 out of 21 requests, contact details were obtained within 7 days after arrival (81%). The average delay between arrival and CI was 3,9 days (range 2-7), mainly caused by delay in diagnosis of the index patient after arrival (2,6 days). In four flights (19%), contacts were not identified or only after > 7 days. CI involving Dutch airlines was faster than non-Dutch airlines (<it>P </it>< 0,05). Passenger locator cards did not improve timeliness of CI. In only three flights contact details were identified within 2 days after arrival.</p> <p>Conclusion</p> <p>CT for influenza A/H1N1 2009 among flight passengers was not successful for timely provision of prophylaxis. CT had little additional value for alerting passengers for disease symptoms, as this information already was provided during and after the flight. Public health authorities should take into account patient delays in seeking medical advise and laboratory confirmation in relation to maximum time to provide postexposure prophylaxis when deciding to install contact tracing measures. International standardization of CT guidelines is recommended.</p

    Usefulness of primary care electronic networks to assess the incidence of chlamydia, diagnosed by general practitioners

    Get PDF
    Background: Chlamydia is the most common curable sexually transmitted infection (STI) in the Netherlands. The majority of chlamydia diagnoses are made by general practitioners (GPs). Baseline data from primary care will facilitate the future evaluation of the ongoing large population-based screening in the Netherlands. The aim of this study was to assess the usefulness of electronic medical records for monitoring the incidence of chlamydia cases diagnosed in primary care in the Netherlands. Methods. In the electronic records of two regional and two national networks, we identified chlamydia diagnoses by means of ICPC codes (International Classification of Primary Care), laboratory results in free text and the prescription of antibiotics. The year of study was 2007 for the two regional networks and one national network, for the other national network the year of study was 2005. We calculated the incidence of diagnosed chlamydia cases per sex, age group and degree of urbanization. Results: A large diversity was observed in the way chlamydia episodes were coded in the four different GP networks and how easily information concerning chlamydia diagnoses could be extracted. The overall incidence ranged from 103.2/100,000 to 590.2/100,000. Differences were partly related to differences between patient populations. Nevertheless, we observed similar trends in the incidence of chlamydia diagnoses in all networks and findings were in line with earlier reports. Conclusions: Electronic patient records, originally intended for individual patient care in general practice, can be an additional source of data for monitoring chlamydia incidence in primary care and can be of use in assessing the future impact of population-based chlamydia screening programs. To increase the usefulness of data we recommend more efforts to standardize registration by (specific) ICPC code and laboratory results across the existing GP networks

    Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods

    Get PDF
    Gibbons CL, Mangen M-JJ, Plaß D, et al. Measuring underreporting and under-ascertainment in infectious disease datasets: a comparison of methods. BMC Public Health. 2014;14(1): 147.Background: Efficient and reliable surveillance and notification systems are vital for monitoring public health and disease outbreaks. However, most surveillance and notification systems are affected by a degree of underestimation (UE) and therefore uncertainty surrounds the 'true' incidence of disease affecting morbidity and mortality rates. Surveillance systems fail to capture cases at two distinct levels of the surveillance pyramid: from the community since not all cases seek healthcare (under-ascertainment), and at the healthcare-level, representing a failure to adequately report symptomatic cases that have sought medical advice (underreporting). There are several methods to estimate the extent of under-ascertainment and underreporting. Methods: Within the context of the ECDC-funded Burden of Communicable Diseases in Europe (BCoDE)-project, an extensive literature review was conducted to identify studies that estimate ascertainment or reporting rates for salmonellosis and campylobacteriosis in European Union Member States (MS) plus European Free Trade Area (EFTA) countries Iceland, Norway and Switzerland and four other OECD countries (USA, Canada, Australia and Japan). Multiplication factors (MFs), a measure of the magnitude of underestimation, were taken directly from the literature or derived (where the proportion of underestimated, under-ascertained, or underreported cases was known) and compared for the two pathogens. Results: MFs varied between and within diseases and countries, representing a need to carefully select the most appropriate MFs and methods for calculating them. The most appropriate MFs are often disease-,country-, age-, and sex-specific. Conclusions: When routine data are used to make decisions on resource allocation or to estimate epidemiological parameters in populations, it becomes important to understand when, where and to what extent these data represent the true picture of disease, and in some instances (such as priority setting) it is necessary to adjust for underestimation. MFs can be used to adjust notification and surveillance data to provide more realistic estimates of incidence

    The impact of demographic change on the estimated future burden of infectious diseases: examples from hepatitis B and seasonal influenza in the Netherlands

    Get PDF
    McDonald SA, van Lier A, Plaß D, Kretzschmar MEE. The impact of demographic change on the estimated future burden of infectious diseases: examples from hepatitis B and seasonal influenza in the Netherlands. Bmc Public Health. 2012;12(1): 1046.Background: For accurate estimation of the future burden of communicable diseases, the dynamics of the population at risk - namely population growth and population ageing - need to be taken into account. Accurate burden estimates are necessary for informing policy-makers regarding the planning of vaccination and other control, intervention, and prevention measures. Our aim was to qualitatively explore the impact of population ageing on the estimated future burden of seasonal influenza and hepatitis B virus (HBV) infection in the Netherlands, in the period 2000-2030. Methods: Population-level disease burden was quantified using the disability-adjusted life years (DALY) measure applied to all health outcomes following acute infection. We used national notification data, pre-defined disease progression models, and a simple model of demographic dynamics to investigate the impact of population ageing on the burden of seasonal influenza and HBV. Scenario analyses were conducted to explore the potential impact of intervention-associated changes in incidence rates. Results: Including population dynamics resulted in increasing burden over the study period for influenza, whereas a relatively stable future burden was predicted for HBV. For influenza, the increase in DALYs was localised within YLL for the oldest age-groups (55 and older), and for HBV the effect of longer life expectancy in the future was offset by a reduction in incidence in the age-groups most at risk of infection. For both infections, the predicted disease burden was greater than if a static demography was assumed: 1.0 (in 2000) to 2.3-fold (in 2030) higher DALYs for influenza; 1.3 (in 2000) to 1.5-fold (in 2030) higher for HBV. Conclusions: There are clear, but diverging effects of an ageing population on the estimated disease burden of influenza and HBV in the Netherlands. Replacing static assumptions with a dynamic demographic approach appears essential for deriving realistic burden estimates for informing health policy
    corecore