9 research outputs found

    Aktuelle Herausforderungen in der Therapie des Typ-1-Diabetes beim Kind

    Get PDF
    Das 1921 entdeckte Insulin wurde 1922 erstmals als Therapie für Typ-1-Diabetes eingeführt. Hundert Jahre später wird es immer noch als einzige medikamentöse Behandlung eingesetzt. Die jüngsten Fortschritte haben zu einer erheblichen Optimierung der Stoffwechselkontrolle beigetragen. Einleitung Typ-1-Diabetes (T1D) ist eine der häufigsten chronischen Erkrankungen bei Kindern, mit einer jährlichen Inzidenzzunahme von 3% [1]. Die Ätiologie des T1D ist unbekannt, aber eine Dysregulation der Autoimmunität, dokumentiert durch die Zirkulation von Autoantikörpern, sowie eine genetische Prädisposition sind ursächlich beteiligt. Das Risiko, an T1D zu erkranken, beträgt bei Kindern 0,4%; gibt es bereits an T1D-erkrankte Familienangehörige, steigt das Risiko um das Zehnfache. Neueste Daten weisen auf einen deutlichen Anstieg der weltweiten Inzidenz während der Corona-Pandemie hin [2–5]. Ziel dieses Beitrags ist es, die neuesten Entwicklungen und aktuellen Herausforderungen bei der Behandlung des T1D bei Kindern darzustellen

    KLB , encoding β‐Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic form of isolated gonadotropin‐releasing hormone (GnRH) deficiency caused by mutations in > 30 genes. Fibroblast growth factor receptor 1 (FGFR1) is the most frequently mutated gene in CHH and is implicated in GnRH neuron development and maintenance. We note that a CHH FGFR1 mutation (p.L342S) decreases signaling of the metabolic regulator FGF21 by impairing the association of FGFR1 with β‐Klotho (KLB), the obligate co‐receptor for FGF21. We thus hypothesized that the metabolic FGF21/KLB/FGFR1 pathway is involved in CHH. Genetic screening of 334 CHH patients identified seven heterozygous loss‐of‐function KLB mutations in 13 patients (4%). Most patients with KLB mutations (9/13) exhibited metabolic defects. In mice, lack of Klb led to delayed puberty, altered estrous cyclicity, and subfertility due to a hypothalamic defect associated with inability of GnRH neurons to release GnRH in response to FGF21. Peripheral FGF21 administration could indeed reach GnRH neurons through circumventricular organs in the hypothalamus. We conclude that FGF21/KLB/FGFR1 signaling plays an essential role in GnRH biology, potentially linking metabolism with reproduction

    Predictors of surgical complications in boys with hypospadias: data from an international registry

    Get PDF
    Background: Complications are frequently reported after hypospadias repair and there is a need to understand the factors that influence their occurrence. Methods: Data from boys with hypospadias born between 2000 and 2020 were obtained from the International Disorders of Sex Development (I-DSD) Registry. Logistic regressions, fisher’s exact tests and spearman’s correlation tests were performed on the data to assess associations between clinical factors and complication rates. Results: Of the 551 eligible boys, data were available on 160 (29%). Within the cohort, the median (range) External Masculinization Score (EMS) was 6 (2, 9). All presented with one or more additional genital malformation and 61 (38%) presented with additional extragenital malformations. Disorders of androgen action, androgen synthesis and gonadal development were diagnosed in 28 (18%), 22 (14%) and 9 (6%) boys, respectively. The remaining 101 (62%) patients were diagnosed as having non-specific 46,XY Disorders of Sex Development. Eighty (50%) boys had evidence of abnormal biochemistry, and gene variants were identified in 42 (26%). Median age at first hypospadias surgery was 2 years (0, 9), and median length of follow-up was 5 years (0, 17). Postsurgical complications were noted in 102 (64%) boys. There were no significant associations with postsurgical complications. Conclusions: Boys with proximal hypospadias in the I-DSD Registry have high rates of additional comorbidities and a high risk of postoperative complications. No clinical factors were significantly associated with complication rates. High complication rates with no observable cause suggest the involvement of other factors which need investigation

    Effects of neoglucogenic substrates on hepatic glucose metabolism in humans

    No full text

    Inflammatory and prothrombotic states in obese children of European descent

    No full text
    Adipose tissue may release mediators that induce a chronic inflammatory state and alterations in coagulation, which contribute to insulin resistance, atherosclerosis, and thrombosis. We investigated whether inflammatory and/or prothrombotic states exist in obese children and assessed their interrelationship. Sixty-one subjects were recruited, aged between 6 and 16 years, to participate in a cross-sectional study at Children's University Hospital of Geneva. Selected pro/anti-inflammatory cytokines/chemokines and hemostasis parameters were measured in obese children and lean controls. Cardiovascular risk factors in the family were indexed. Fasting glucose level, insulin, prothrombin time (PT), fibrinogen, activated partial thromboplastin time (aPTT), D-dimer, endogenous thrombin potential (ETP), C-reactive protein (CRP), interleukin-6 (IL-6), interleukin-10 (IL-10), interferon-γ-inducible-protein (IP-10), monocyte chemoattractant protein 1 (MCP-1), and interleukin-1 receptor antagonist (IL-1Ra) were measured. We estimated insulin resistance by homeostatic model assessment (HOMA). Anti- (IL-1Ra) and proinflammatory cytokines (MCP-1, IL-6) were significantly increased in obese children in comparison to the control group, even before puberty. Hemostasis was also altered in obese children with a significantly increased fibrinogen level, increased D-dimer, a shortened PT, as well as an increased ETP. No correlation was found between cytokine levels and hemostasis parameters, except for IL-6 and fibrinogen. Obese children present with inflammatory and prothrombotic states as early as 6 years of age and these states are similar in prepubertal and pubertal obese children. The cytokines IL-1Ra and MCP-1 were most significantly increased in obese children. Further investigation is necessary to determine if these cytokines, together with ETP, can reliably predict the development of diabetes and atherosclerosis
    corecore