22 research outputs found

    Protective Activity of Broccoli Sprout Juice in a Human Intestinal Cell Model of Gut Inflammation

    Get PDF
    Benefits to health from a high consumption of fruits and vegetables are well established and have been attributed to bioactive secondary metabolites present in edible plants. However, the effects of specific health-related phytochemicals within a complex food matrix are difficult to assess. In an attempt to address this problem, we have used elicitation to improve the nutraceutical content of seedlings of Brassica oleracea grown under controlled conditions. Analysis, by LC-MS, of the glucosinolate, isothiocyanate and phenolic compound content of juices obtained from sprouts indicated that elicitation induces an enrichment of several phenolics, particularly of the anthocyanin fraction. To test the biological activity of basal and enriched juices we took advantage of a recently developed in vitro model of inflamed human intestinal epithelium. Both sprouts’ juices protected intestinal barrier integrity in Caco-2 cells exposed to tumor necrosis factor under marginal zinc deprivation, with the enriched juice showing higher protection. Multivariate regression analysis indicated that the extent of rescue from stress-induced epithelial dysfunction correlated with the composition in bioactive molecules of the juices and, in particular, with a group of phenolic compounds, including several anthocyanins, quercetin-3-Glc, cryptochlorogenic, neochlorogenic and cinnamic acids

    A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer’s Disease Spectrum

    Get PDF
    Background: Alzheimer’s disease (AD) is a neurodegenerative condition driven by multifactorial etiology. Mild cognitive impairment (MCI) is a transitional condition between healthy aging and dementia. No reliable biomarkers are available to predict the conversion from MCI to AD. Objective: To evaluate the use of machine learning (ML) on a wealth of data offered by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Alzheimer’s Disease Metabolomics Consortium (ADMC) database in the prediction of the MCI to AD conversion. Methods: We implemented an ML-based Random Forest (RF) algorithm to predict conversion from MCI to AD. Data related to the study population (587 MCI subjects) were analyzed by RF as separate or combined features and assessed for classification power. Four classes of variables were considered: neuropsychological test scores, AD-related cerebrospinal fluid (CSF) biomarkers, peripheral biomarkers, and structural magnetic resonance imaging (MRI) variables. Results: The ML-based algorithm exhibited 86% accuracy in predicting the AD conversion of MCI subjects. When assessing the features that helped the most, neuropsychological test scores, MRI data, and CSF biomarkers were the most relevant in the MCI to AD prediction. Peripheral parameters were effective when employed in association with neuropsychological test scores. Age and sex differences modulated the prediction accuracy. AD conversion was more effectively predicted in females and younger subjects. Conclusion: Our findings support the notion that AD-related neurodegenerative processes result from the concerted activity of multiple pathological mechanisms and factors that act inside and outside the brain and are dynamically affected by age and sex

    Antioxidant Properties of Aminoethylcysteine Ketimine Decarboxylated Dimer: A Review

    Get PDF
    Aminoethylcysteine ketimine decarboxylated dimer is a natural sulfur-containing compound detected in human plasma and urine, in mammalian brain and in many common edible vegetables. Over the past decade many studies have been undertaken to identify its metabolic role. Attention has been focused on its antioxidant properties and on its reactivity against oxygen and nitrogen reactive species. These properties have been studied in different model systems starting from plasma lipoproteins to specific cellular lines. All these studies report that aminoethylcysteine ketimine decarboxylated dimer is able to interact both with reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion, hydroxyl radical, peroxynitrite and its derivatives). Its antioxidant activity is similar to that of Vitamin E while higher than other hydrophilic antioxidants, such as trolox and N-acetylcysteine

    An Overview of Bioactive Phenolic Molecules and Antioxidant Properties of Beer: Emerging Trends

    No full text
    Beer is one of the oldest and most common beverages worldwide. The phenolic contents and antioxidant properties of beer are crucial factors in evaluating its nutritional quality. Special beers brewed with the addition of adjuncts are gaining in consumer preference, in response to demands for healthy food and new gustatory and olfactory stimuli. Many studies recently dealt with functional beers brewed with the addition of adjuncts. This review focuses on bioactive molecules, particularly the composition of phenolic compounds, and the antioxidant activity of beer. The current knowledge concerning the effect of the addition of adjuncts in the form of fruit, vegetables, herbs, and natural foods on the polyphenol content, antioxidant properties, and phenolic profile of beer is reviewed, with an outline of the emerging trends in brewing processes. Future studies need to complete the identification and characterization of the bioactive molecules in beer, as well as studying their absorption and metabolic fate in humans

    Feature Papers in Food Chemistry

    No full text
    The Special Issue, entitled “Feature Papers in Food Chemistry”, is a collection of important high-quality papers (original research articles or comprehensive review papers) published in open access format [...

    Effect of Sulfites on Antioxidant Activity, Total Polyphenols, and Flavonoid Measurements in White Wine

    No full text
    Polyphenols content and antioxidant activity are directly related to the quality of wine. Wine also contains sulfites, which are added during the winemaking process. The present study aimed to evaluate the effects of sulfites on the assays commonly used to measure the antioxidant activity and polyphenols and flavonoids content of white wines. The effects of sulfites were explored both in the standard assays and in white wine. The addition of sulfites (at 1–10 μg) in the standard assays resulted in a significant, positive interference in the Folin–Ciocalteu’s assay used for polyphenols measurements and in both the Ferric Reducing Antioxidant Power and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radical cation decolorization assays, which were used for antioxidant activity evaluation. A negative interference of sulfites (at 1–20 μg) was observed for the colorimetric aluminium-chloride flavonoids assay. The addition of sulfites to organic white wines (at 25–200 mg/L wine) clearly resulted in a significant overestimation of antioxidant activity and polyphenols content, and in an underestimation of flavonoids concentration. To overcome sulfite interferences, white wines were treated with cross-linked polyvinylpyrrolidone. The total polyphenols content and antioxidant activity measurements obtained after polyvinylpyrrolidone treatment were significantly lower than those obtained in the untreated wines. Flavonoids were expected to be higher after polyvinylpyrrolidone treatment, but were instead found to be lower than for untreated wines, suggesting that in addition to sulfites, other non-phenolic reducing compounds were present in white wine and interfered with the flavonoid assay. In view of our results, we advise that a purification procedure should be applied in order to evaluate the quality of white wine

    Identification of aminoethylcysteine ketimine decarboxylated dimer, a natural antioxidant, in dietary vegetables

    No full text
    Aminoethylcysteine ketimine decarboxylated dimer (simply named dimer) is a natural sulfur-containing tricyclic compound detected, until now, in human urine, bovine cerebellum, and human plasma. Recently, the antioxidant properties of this compound have been demonstrated. In this investigation, the presence of aminoethylcysteine ketimine decarboxylated dimer was identified in garlic, spinach, tomato, asparagus, aubergine, onion, pepper, and courgette. Identification of this compound in dietary vegetables was performed using gas chromatography, high-performance liquid chromatography, and gas chromatography-mass spectrometry. Results from GC analysis range in the order of 10(-4) mumol of dimer/g for all the tested vegetables. These results and the lack of a demonstrated biosynthetic pathway in humans might account for a dietary supply of this molecule
    corecore