12 research outputs found
Nanoparticle/biopolymer-based coatings for functionalization of textiles: recent developments (a minireview)
[EN] This minireview presents recent developments in surface nano-structured textiles and their biomedical applications by up-to-date achievements, summarizing the coatings made of biopolymer films and nanoparticles on different textile substrates for enhanced medical applications, diminishing the incidence of the multiple range of hospital-acquired infections in the past 10 years. The combination of metal and metal oxide nanoparticles with biopolymers is an efficient technique to generate enhanced antibacterial, virucidal and antifungal properties to textiles. Only a few review articles offer a comprehensive insight into the surface tailoring of textiles by nanoparticles-biopolymers use as an alternative for surface modification of textiles, granting them biocidal performance. The overview points out the compelling reasons for scientists and experts to enhance the already existing results in the biomedical textiles domain, with an emphasis on antimicrobial responsivity, highlighting: (a) the benefit of the simultaneous nanoparticles-biopolymers deposition on textiles by various deposition techniques, meaning the wash fastness of the antibacterial attributes and the biocompatibility of the material in comparison with only nanoparticle coating; (b) the use of biopolymers to stabilize colloidal dispersions of nanoparticles, granting the nanoparticles functionalities for covalent immobilization on textiles with long-lasting antibacterial effect; (c) the most usual metal and metal oxide nanoparticles and biopolymers for antibacterial textile applications.The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The project was financed by Lucian Blaga University of Sibiu and Hasso Plattner Foundation research grants LBUS-IRG-2021-07.Vrinceanu, N.; Bucur, S.; Rimbu, CM.; Neculai-Valeanu, S.; Ferrándiz Bou, S.; Suchea, MP. (2022). Nanoparticle/biopolymer-based coatings for functionalization of textiles: recent developments (a minireview). Textile Research Journal. 92(19-20):3889-3902. https://doi.org/10.1177/00405175211070613388939029219-2
Μελέτη λεπτών υμενίων Ιn2O3 και ZnO για εφαρμογές σε επιλεκτικούς αισθητήρες αερίων: Η επίδραση της ανάπτυξης στην δομή των υμενίων και της επιφανειακής τους τοπολογίας ως ουσιαστικός παράγοντας για εφαρμογές αισθητήρων από λεπτά υμένια οξειδίων μετάλλων
Στόχος της διατριβής ήταν η μελέτη λεπτών υμενίων In2O3 και ZnO για εφαρμογές σε αισθητήρες ανίχνευσης αερίων, με έμφαση στην επίδραση της διαδικασίας ανάπτυξης στην δομή των υμενίων και την επιφανειακή τοπολογία, παράγοντες ουσιαστικούς στη συμπεριφορά υμένιων οξειδίων μετάλλων. Ένα από τα μεγαλύτερα προβλήματα στο πεδίο των αισθητήρων αερίων με βάση τα υμένια οξειδίων μετάλλων αποτελεί η απουσία μιας ενιαίας μεθοδολογίας που θα μπορούσε να οδηγήσει σε ελεγχόμενη αναπαραγωγή της απόκρισης ενός αισθητήρα σε συνάρτηση με τα επιφανειακά χαρακτηριστικά του. Για αυτό το λόγο, η συστηματική μελέτη της επίδρασης των επιφανειακών χαρακτηριστικών στα φαινόμενα που επηρεάζουν τις ιδιότητες των αισθητήρων από οξείδια μετάλλων αποτελεί ένα ιδιαίτερης σπουδαιότητας πεδίο έρευνας.
Με τη χρήση της τεχνικής εναπόθεσης DC magnetron sputtering και της εναπόθεσης με παλμικό λέιζερ (pulsed laser deposition), αναπτύχθηκαν νανοδομημένα υμένια από In2O3 και απλό ή με προσμείξεις ZnO, οι ιδιότητες των οποίων μελετήθηκαν στη συνέχεια. Η μελέτη εστιάστηκε στη μορφολογία του υμενίου και πως αυτή επηρεάζει την αποδοτικότητα φωτοαναγωγής με υπεριώδες φως και οξείδωσης με όζον, με απώτερο στόχο την βελτιστοποίηση των ιδιοτήτων του υμενίου σε σχέση με την χρήση του ως αισθητήρας αερίων. Προς την κατεύθυνση αυτή μελετήθηκαν υμένια που αναπτύχθηκαν με διαφορετικές συνθήκες όπως:
1) υμένια In2O3που αναπτύχθηκαν με την τεχνική DC magnetron sputtering. Εξετάστηκε η επίδραση του πάχους, της θερμοκρασίας, της πίεσης και του λόγου οξυγόνου/αργού στο θάλαμο
2) υμένια απλού ZnO που αναπτύχθηκαν με την τεχνική DC magnetron sputtering από μεταλλικό ή κεραμικό στόχο. Εξετάστηκε η επίδραση της θερμοκρασίας υπό σταθερό πάχος, η επίδραση του πάχους υπό σταθερή θερμοκρασία αλλά και η επίδραση πίεσης και λόγου οξυγόνου/αργού στο θάλαμο
3) υμένια ZnO με 2% πρόσμειξη Al που αναπτύχθηκαν με την τεχνική DC magnetron sputtering. Εξετάστηκε η επίδραση του πάχους και του λόγου οξυγόνου/αργού στο θάλαμο
4) υμένια ZnO με πρόσμειξη In που αναπτύχθηκαν με την τεχνική DC magnetron sputtering. Εξετάστηκε η επίδραση του πάχους και του λόγου οξυγόνου/αργού στο θάλαμο
5) υμένια απλού ZnO που αναπτύχθηκαν με την τεχνική εναπόθεση με παλμικό λέιζερ. Εξετάστηκε η επίδραση της θερμοκρασίας και του πάχους, και δόθηκε έμφαση στα πολύ λεπτά υμένια.
Όλα τα υμένια χαρακτηρίστηκαν ως προς τη δομή και την τοπολογία της επιφάνειας (με στόχο την κατανόηση και την βελτιστοποίηση της επίδρασης των συνθηκών ανάπτυξης στις επιφανειακές ιδιότητες), ως προς την οπτική και ηλεκτρική συμπεριφορά (με στόχο την κατανόηση και την βελτιστοποίηση των διαδικασιών φωτοαναγωγής και οξείδωσης) και ως την λειτουργία τους ως αισθητήρες όζοντος.
Παράλληλα, διενεργήθηκε αναλυτικός χαρακτηρισμός της επιφάνειας κάθε υμενίου που αναπτύχθηκε και τα αποτελέσματα χρησιμοποιήθηκαν για περαιτέρω συσχέτιση των επιφανειακών ιδιοτήτων με την λειτουργία του αισθητήρα αερίου. Τέλος, αναπτύχθηκαν γραφικοί συσχετισμοί των παραμέτρων της επιφάνειας με τις παραμέτρους του αισθητήρα.The goal of this thesis was the study of In2O3 and ZnO thin films for selective gas sensors applications with focus on the growth effect on the films structure and surface topology, essential factors in metal oxide thin film sensors operation. One of the main problems in the field of metal oxide thin film sensors is the impossibility to elaborate a unitary methodology for reproducing the sensor response in correlation with the surface characteristics. For this reason, the systematic study of the influence of the surface characteristics on the sensing involved phenomena plays a major role for the development of optimized gas sensors.
Using DC magnetron sputtering and pulsed laser deposition, nanostructured In2O3 and pure or doped ZnO thin films were grown and fully characterized. The study was focused on the morphology of the film and how this can affect their photoreduction with UV light and oxidation by oxidizing gas (ozone), so that the film properties can be optimized for gas sensing applications. For this purpose, different series of samples were grown like:
- In2O3 series by DC magnetron sputtering varying the following growth parameters: thickness, growth temperature and total pressure and oxygen:argon ratio during the deposition.
- Pure ZnO series by DC magnetron sputtering from metallic and ceramic targets varying the following growth parameters: thickness for different constant growth temperatures, temperature for constant thickness, total pressure and oxygen:argon ratio during the deposition.
- 2% Al doped ZnO by DC magnetron sputtering varying the following growth parameters: thickness and oxygen:argon ratio during growth.
- In doped ZnO thin films by DC magnetron sputtering varying the following growth parameters: thickness and oxygen:argon ratio during growth.
- Pure ZnO series by PLD varying the following growth parameters: thickness and substrate temperature with focus on very thin films (40nm and 100nm series at different growth temperatures).
All films were fully characterized with respect to their structural and surface topology (for understating and optimization of the influences of the growth conditions on the surface properties), optical/electrical response (for understanding and optimization of the photoreduction and oxidation processes) and sensing behavior.
Detailed surface characterization of each film surface was performed and the results were used for further correlation between surface properties and sensing response. Graphical correlations between surface parameters and sensor response parameters were done for each material studied
Μελέτη λεπτών υμενίων Ιn2O3 και ZnO για εφαρμογές σε επιλεκτικούς αισθητήρες αερίων: Η επίδραση της ανάπτυξης στην δομή των υμενίων και της επιφανειακής τους τοπολογίας ως ουσιαστικός παράγοντας για εφαρμογές αισθητήρων από λεπτά υμένια οξειδίων μετάλλων
Στόχος της διατριβής ήταν η μελέτη λεπτών υμενίων In2O3 και ZnO για εφαρμογές σε αισθητήρες ανίχνευσης αερίων, με έμφαση στην επίδραση της διαδικασίας ανάπτυξης στην δομή των υμενίων και την επιφανειακή τοπολογία, παράγοντες ουσιαστικούς στη συμπεριφορά υμένιων οξειδίων μετάλλων. Ένα από τα μεγαλύτερα προβλήματα στο πεδίο των αισθητήρων αερίων με βάση τα υμένια οξειδίων μετάλλων αποτελεί η απουσία μιας ενιαίας μεθοδολογίας που θα μπορούσε να οδηγήσει σε ελεγχόμενη αναπαραγωγή της απόκρισης ενός αισθητήρα σε συνάρτηση με τα επιφανειακά χαρακτηριστικά του. Για αυτό το λόγο, η συστηματική μελέτη της επίδρασης των επιφανειακών χαρακτηριστικών στα φαινόμενα που επηρεάζουν τις ιδιότητες των αισθητήρων από οξείδια μετάλλων αποτελεί ένα ιδιαίτερης σπουδαιότητας πεδίο έρευνας.
Με τη χρήση της τεχνικής εναπόθεσης DC magnetron sputtering και της εναπόθεσης με παλμικό λέιζερ (pulsed laser deposition), αναπτύχθηκαν νανοδομημένα υμένια από In2O3 και απλό ή με προσμείξεις ZnO, οι ιδιότητες των οποίων μελετήθηκαν στη συνέχεια. Η μελέτη εστιάστηκε στη μορφολογία του υμενίου και πως αυτή επηρεάζει την αποδοτικότητα φωτοαναγωγής με υπεριώδες φως και οξείδωσης με όζον, με απώτερο στόχο την βελτιστοποίηση των ιδιοτήτων του υμενίου σε σχέση με την χρήση του ως αισθητήρας αερίων. Προς την κατεύθυνση αυτή μελετήθηκαν υμένια που αναπτύχθηκαν με διαφορετικές συνθήκες όπως:
1) υμένια In2O3που αναπτύχθηκαν με την τεχνική DC magnetron sputtering. Εξετάστηκε η επίδραση του πάχους, της θερμοκρασίας, της πίεσης και του λόγου οξυγόνου/αργού στο θάλαμο
2) υμένια απλού ZnO που αναπτύχθηκαν με την τεχνική DC magnetron sputtering από μεταλλικό ή κεραμικό στόχο. Εξετάστηκε η επίδραση της θερμοκρασίας υπό σταθερό πάχος, η επίδραση του πάχους υπό σταθερή θερμοκρασία αλλά και η επίδραση πίεσης και λόγου οξυγόνου/αργού στο θάλαμο
3) υμένια ZnO με 2% πρόσμειξη Al που αναπτύχθηκαν με την τεχνική DC magnetron sputtering. Εξετάστηκε η επίδραση του πάχους και του λόγου οξυγόνου/αργού στο θάλαμο
4) υμένια ZnO με πρόσμειξη In που αναπτύχθηκαν με την τεχνική DC magnetron sputtering. Εξετάστηκε η επίδραση του πάχους και του λόγου οξυγόνου/αργού στο θάλαμο
5) υμένια απλού ZnO που αναπτύχθηκαν με την τεχνική εναπόθεση με παλμικό λέιζερ. Εξετάστηκε η επίδραση της θερμοκρασίας και του πάχους, και δόθηκε έμφαση στα πολύ λεπτά υμένια.
Όλα τα υμένια χαρακτηρίστηκαν ως προς τη δομή και την τοπολογία της επιφάνειας (με στόχο την κατανόηση και την βελτιστοποίηση της επίδρασης των συνθηκών ανάπτυξης στις επιφανειακές ιδιότητες), ως προς την οπτική και ηλεκτρική συμπεριφορά (με στόχο την κατανόηση και την βελτιστοποίηση των διαδικασιών φωτοαναγωγής και οξείδωσης) και ως την λειτουργία τους ως αισθητήρες όζοντος.
Παράλληλα, διενεργήθηκε αναλυτικός χαρακτηρισμός της επιφάνειας κάθε υμενίου που αναπτύχθηκε και τα αποτελέσματα χρησιμοποιήθηκαν για περαιτέρω συσχέτιση των επιφανειακών ιδιοτήτων με την λειτουργία του αισθητήρα αερίου. Τέλος, αναπτύχθηκαν γραφικοί συσχετισμοί των παραμέτρων της επιφάνειας με τις παραμέτρους του αισθητήρα.The goal of this thesis was the study of In2O3 and ZnO thin films for selective gas sensors applications with focus on the growth effect on the films structure and surface topology, essential factors in metal oxide thin film sensors operation. One of the main problems in the field of metal oxide thin film sensors is the impossibility to elaborate a unitary methodology for reproducing the sensor response in correlation with the surface characteristics. For this reason, the systematic study of the influence of the surface characteristics on the sensing involved phenomena plays a major role for the development of optimized gas sensors.
Using DC magnetron sputtering and pulsed laser deposition, nanostructured In2O3 and pure or doped ZnO thin films were grown and fully characterized. The study was focused on the morphology of the film and how this can affect their photoreduction with UV light and oxidation by oxidizing gas (ozone), so that the film properties can be optimized for gas sensing applications. For this purpose, different series of samples were grown like:
- In2O3 series by DC magnetron sputtering varying the following growth parameters: thickness, growth temperature and total pressure and oxygen:argon ratio during the deposition.
- Pure ZnO series by DC magnetron sputtering from metallic and ceramic targets varying the following growth parameters: thickness for different constant growth temperatures, temperature for constant thickness, total pressure and oxygen:argon ratio during the deposition.
- 2% Al doped ZnO by DC magnetron sputtering varying the following growth parameters: thickness and oxygen:argon ratio during growth.
- In doped ZnO thin films by DC magnetron sputtering varying the following growth parameters: thickness and oxygen:argon ratio during growth.
- Pure ZnO series by PLD varying the following growth parameters: thickness and substrate temperature with focus on very thin films (40nm and 100nm series at different growth temperatures).
All films were fully characterized with respect to their structural and surface topology (for understating and optimization of the influences of the growth conditions on the surface properties), optical/electrical response (for understanding and optimization of the photoreduction and oxidation processes) and sensing behavior.
Detailed surface characterization of each film surface was performed and the results were used for further correlation between surface properties and sensing response. Graphical correlations between surface parameters and sensor response parameters were done for each material studied
Μελέτη λεπτών υμενίων In2O3 και ZnO για εφαρμογές σε επιλεκτικούς αισθητήρες αερίων: η επίδραση της ανάπτυξης στην δομη των υμενίων και της επιφανειακής τους τοπολογίας ως ουσιαστικός παράγοντας γα εφαρμογές αισθητήρων από λεπτά υμένια οξειδίων μετάλλων
The goal of this thesis is the study In2O3 and ZnO thin films for selective gas sensors applications with focus on growth effect on the films structure and surface topology as essential factor in metal oxide thin films. One of the main problems in the field of metal oxide thin film sensors is the impossibility to elaborate a unitary methodology for reproducibility of sensor response in correlation with the surface characteristics. For this, the systematic study of surface characteristics effects on metal oxide thin films sensing involved phenomena plays a major role. Using DC magnetron sputtering and pulsed laser deposition, nanostructured In2O3 and pure or doped ZnO thin films were grown and fully characterized. The study was focused on the morphology of the film and how this affects the photoreduction with UV light and the oxidation by oxidizing gas (ozone) exposure in order to optimize the film properties for gas sensing applications,. For this purpose, different series of samples were grown: In2O3 series by DC magnetron sputtering varying the following growth parameters: thickness, growth temperature and total pressure and oxygen:argon ratio during the deposition. Pure ZnO series by DC magnetron sputtering from metallic and ceramic targets varying the following growth parameters: thickness for different constant growth temperatures, temperature for constant thickness, total pressure and oxygen:argon ratio during the deposition. 2% Al doped ZnO by DC magnetron sputtering varying the following growth parameters: thickness and oxygen:argon ratio during growth. In doped ZnO thin films by DC magnetron sputtering varying the following growth parameters: thickness and oxygen:argon ratio during growth. Pure ZnO series by PLD varying the following growth parameters: thickness and substrate temperature with focus on very thin films (40nm and 100nm series at different growth temperatures). All films were fully characterized with respect to their structural and surface topology (for understating and optimization of the influences of the growth conditions on the surface properties), optical/electrical response (for understanding and optimization of the photoreduction and oxidation processes) and sensing behavior. Detailed surface characterization of each film surface was performed and results were collected for further correlation between surface properties and sensing response. Graphical correlations between surface parameters and sensor response ratios were done for each material studied
Photocatalytic Properties of Eco-Friendly ZnO Nanostructures on 3D-Printed Polylactic Acid Scaffolds
The present paper reports a novel approach for fabrication of eco-friendly ZnO nanoparticles onto three-dimensional (3D)-printed polylactic acid (PLA) scaffolds/structures. Several alcohol-based traditional Greek liquors were used to achieve the corrosion of metallic zinc collected from a typical galvanic anode to obtain photocatalytic active nanostructured ZnO, varying from water, to Greek “ouzo” and “raki”, and pure ethanol, in combination with “Baker’s ammonia” (ammonium bicarbonate), sold worldwide in every food store. The photocatalytic active ZnO nanostructures onto three-dimensional (3D)-printed PLA scaffolds were used to achieve the degradation of 50 ppm paracetamol in water, under UV irradiation. This study provides evidence that following the proposed low-cost, eco-friendly routes for the fabrication of large-scale photocatalysts, an almost 95% degradation of 50 ppm paracetamol in water can be achieved, making the obtained 3D ZnO/PLA structures excellent candidates for real life environmental applications. This is the first literature research report on a successful attempt of using this approach for the engineering of low-cost photocatalytic active elements for pharmaceutical contaminants in waters
On the Development of a New Flexible Pressure Sensor
The rapid advancement of the Internet of Things (IoT) serves as a significant driving force behind the development of innovative sensors and actuators. This technological progression has created a substantial demand for new flexible pressure sensors, essential for a variety of applications ranging from wearable devices to smart home systems. In response to this growing need, our laboratory has developed a novel flexible pressure sensor, designed to offer an improved performance and adaptability. This study aims to present our newly developed sensor, detailing the comprehensive investigations we conducted to understand how different parameters affect its behaviour. Specifically, we examined the influence of the resistive layer thickness and the elastomeric substrate on the sensor’s performance. The resistive layer, a critical component of the sensor, directly impacts its sensitivity and accuracy. By experimenting with varying thicknesses, we aimed to identify the optimal configuration that maximizes sensor efficiency. Similarly, the elastomeric substrate, which provides the sensor’s flexibility, was scrutinized to determine how its properties affect the sensor’s overall functionality. Our findings highlight the delicate balance required between the resistive layer and the elastomeric substrate to achieve a sensor that is both highly sensitive and durable. This research contributes valuable insights into the design and optimization of flexible pressure sensors, paving the way for more advanced IoT applications
Effect of the Cadmium Telluride Deposition Method on the Covering Degree of Electrodes Based on Copper Nanowire Arrays
In this work, we report the preparation of nanostructured electrodes based on dense arrays of vertically-aligned copper (Cu) nanowires (NWs) to be subsequently covered by cadmium telluride (CdTe) thin films, with great potential to be used within “substrate”-type photovoltaic cells based on AII-BVI heterojunctions. In particular, the multi-step preparation protocol presented here involves an electrochemical synthesis procedure within a supported anodic aluminum oxide (AAO) nanoporous template for first generating a homogeneous array of vertically-aligned Cu NWs, which are then further embedded within a compact CdTe thin film. In a second stage, we tested three deposition methods (vacuum thermal evaporation, VTE; radio-frequency magnetron sputtering, RF-MS; and electrochemical deposition, ECD) for use in obtaining CdTe layers potentially able to consistently penetrate the previously prepared Cu NWs array. A comparative analysis was performed to critically evaluate the morphological, optical, and structural properties of the deposited CdTe films. The presented results demonstrate that under optimized processing conditions, the ECD approach could potentially allow the cost-effective fabrication of absorber layer/collecting electrode CdTe/Cu nanostructured interfaces that could improve charge collection mechanisms, which in turn could allow the fabrication of more efficient solar cells based on AII-BVI semiconducting compounds
Early Notice Pointer, an IoT-like Platform for Point-of-Care Feet and Body Balance Screening
Improper foot biomechanics associated with uneven bodyweight distribution contribute to impaired balance and fall risks. There is a need to complete the panel of commercially available devices for the self-measurement of BMI, fat, muscle, bone, weight, and hydration with one that measures weight-shifting at home as a pre-specialist assessment system. This paper reports the development of the Early Notice Pointer (ENP), a user-friendly screening device based on weighing scale technology. The ENP is designed to be used at home to provide a graphic indication and customised and evidence-based foot and posture triage. The device electronically detects and maps the bodyweight and distinct load distributions on the main areas of the feet: forefoot and rearfoot. The developed platform also presents features that assess the user’s balance, and the results are displayed as a simple numerical report and map. The technology supports data display on mobile phones and accommodates multiple measurements for monitoring. Therefore, the evaluation could be done at non-specialist and professional levels. The system has been tested to validate its accuracy, precision, and consistency. A parallel study to describe the frequency of arch types and metatarsal pressure in young adults (1034 healthy subjects) was conducted to explain the importance of self-monitoring at home for better prevention of foot arch- and posture-related conditions. The results showed the potential of the newly created platform as a screening device ready to be wirelessly connected with mobile phones and the internet for remote and personalised identification and monitoring of foot- and body balance-related conditions. The real-time interpretation of the reported physiological parameters opens new avenues toward IoT-like on-body monitoring of human physiological signals through easy-to-use devices on flexible substrates for specific versatility
Obtaining Nanostructured ZnO onto Si Coatings for Optoelectronic Applications via Eco-Friendly Chemical Preparation Routes
Although the research on zinc oxide (ZnO) has a very long history and its applications are almost countless as the publications on this subject are extensive, this semiconductor is still full of resources and continues to offer very interesting results worth publishing or warrants further investigation. The recent years are marked by the development of novel green chemical synthesis routes for semiconductor fabrication in order to reduce the environmental impacts associated with synthesis on one hand and to inhibit/suppress the toxicity and hazards at the end of their lifecycle on the other hand. In this context, this study focused on the development of various kinds of nanostructured ZnO onto Si substrates via chemical route synthesis using both classic solvents and some usual non-toxic beverages to substitute the expensive high purity reagents acquired from specialized providers. To our knowledge, this represents the first systematic study involving common beverages as reagents in order to obtain ZnO coatings onto Si for optoelectronic applications by the Aqueous Chemical Growth (ACG) technique. Moreover, the present study offers comparative information on obtaining nanostructured ZnO coatings with a large variety of bulk and surface morphologies consisting of crystalline nanostructures. It was revealed from X-ray diffraction analysis via Williamson–Hall plots that the resulting wurtzite ZnO has a large crystallite size and small lattice strain. These morphological features resulted in good optical properties, as proved by photoluminescence (PL) measurements even at room temperature (295 K). Good optical properties could be ascribed to complex surface structuring and large surface-to-volume ratios
Comparative Study of Graphene Nanoplatelets and Multiwall Carbon Nanotubes-Polypropylene Composite Materials for Electromagnetic Shielding
Graphene nanoplatelets (GNPs) and multiwall carbon nanotubes (CNTs)-polypropylene (PP) composite materials for electromagnetic interference (EMI) shielding applications were fabricated as 1 mm thick panels and their properties were studied. Structural and morphologic characterization indicated that the obtained composite materials are not simple physical mixtures of these components but new materials with particular properties, the filler concentration and nature affecting the nanomaterials’ structure and their conductivity. In the case of GNPs, their characteristics have a dramatic effect of their functionality, since they can lead to composites with lower conductivity and less effective EMI shielding. Regarding CNTs-PP composite panels, these were found to exhibit excellent EMI attenuation of more than 40 dB, for 10% CNTs concentration. The development of PP-based composite materials with added value and particular functionality (i.e., electrical conductivity and EMI shielding) is highly significant since PP is one of the most used polymers, the best for injection molding, and virtually infinitely recyclable