269 research outputs found

    Simulation Approach to Assess the Precision of Estimates Derived from Linking Survey and Administrative Records

    Get PDF
    Probabilistic record linkage implies that there is some level of uncertainty related to the classification of pairs as links or non-links vis-à-vis their true match status. As record linkage is usually performed as a preliminary step to developing statistical estimates, the question then is how does this linkage uncertainty propagate to them? In this paper, we develop an approach to estimate the impact of linkage uncertainty on derived estimates by using a re-sampling approach. For each iteration of the re-sampling, pairs are classified as links or non-links by Monte-Carlo assignment to model estimated true match probabilities. By looking at the range of estimates produced in a series of re-samples, we can estimate the distribution of derived statistics under the prevailing incidence of linkage uncertainty. For this analysis we use the results of linking the 2014 National Hospital Care Survey to the National Death Index performed at the National Center for Health Statistics. We assess the precision of hospital-level death rate estimates

    Nonsampling errors and their implication for estimates of current cancer treatment using the Medical Expenditure Panel Survey

    Get PDF
    Survey nonsampling errors refer to the components of total survey error (TSE) that result from failures in data collection and processing procedures. Evaluating nonsampling errors can lead to a better understanding of their sources, which in turn, can inform survey inference and assist in the design of future surveys. Data collected via supplemental questionnaires can provide a means for evaluating nonsampling errors because it may provide additional information on survey nonrespondents and/or measurements of the same concept over repeated trials on the same sampling unit. We used a supplemental questionnaire administered to cancer survivors to explore potential nonsampling errors, focusing primarily on nonresponse and measurement/specification errors. We discuss the implications of our findings in the context of the TSE paradigm and identify areas for future research

    Cross-domain neurobiology data integration and exploration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the biomedical implications of data from high throughput experiments requires solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding high level neurobiological functions.</p> <p>Results</p> <p>Our work integrates molecular level data with high level biological functions and we present results using anatomical structure as a scaffold. Our solution also allows the sharing of intermediate data exploration results with other web applications, greatly increasing the power of cross-domain data exploration and mining.</p> <p>Conclusions</p> <p>The Flex-based PubAnatomy web application we developed enables highly interactive visual exploration of literature and experimental data for understanding the relationships between molecular level changes, pathways, brain circuits and pathophysiological processes. The prototype of PubAnatomy is freely accessible at:[<url>http://brainarray.mbni.med.umich.edu/Brainarray/prototype/PubAnatomy</url>]</p

    Development of multiplex real-time PCR assays for identification of members of the Anopheles funestus species group

    Get PDF
    BACKGROUND: The malaria vector and non-vector species of the Anopheles funestus group are morphologically very similar and accurate identification is required as part of effective control strategies. In the past, this has relied on morphological and cytogenetic methods but these have been largely superseded by a robust allele-specific PCR (AS-PCR). One disadvantage of AS-PCR is the requirement for post-PCR processing by gel electrophoresis of PCR products. In this study, three new high-throughput 'closed-tube' assays were developed and compared with the previously described AS-PCR technique. METHODS: Protocols for three fluorescence-based assays based on Melt Curve Analysis (MCA), High Resolution Melt (HRM) and TaqMan SNP genotyping were developed to detect and discriminate Anopheles parensis, Anopheles leesoni, Anopheles vaneedeni, Anopheles rivulorum and An. funestus s.s. The sensitivity and specificity of these assays were compared with the widely used AS-PCR in a blind trial using DNA extracted from wild-caught mosquitoes. RESULTS: The TaqMan assay proved to be the most sensitive and specific of the three new assays. The MCA and HRM assays initially gave promising results, but were more sensitive to both DNA quality and quantity and consequently showed a higher rate of incorrect identifications. CONCLUSION: The TaqMan assay proved to be the most robust of the three protocols tested in this study. This assay very effectively identified all five members of the An. funestus group using fluorescently-labeled probes with distinct emission and excitation spectra allowing their independent detection in a single reaction. This method is at least as sensitive and specific as the gold standard AS-PCR approach and because it has no requirement for post-PCR processing is simpler and more rapid to run. The one disadvantage of the TaqMan assay is the cost of this assay, both in terms of initial capital outlay and running cost per sample, which is higher than AS-PCR. However, the cost of both the real-time PCR machine and fluorescently labelled probes required is falling and in the future the cost of this assay is likely to become closer to that of standard PCR

    Blood Lead Levels and Death from All Causes, Cardiovascular Disease, and Cancer: Results from the NHANES III Mortality Study

    Get PDF
    BACKGROUND: Analyses of mortality data for participants examined in 1976–1980 in the second National Health and Nutrition Examination Survey (NHANES II) suggested an increased risk of mortality at blood lead levels > 20 μg/dL. Blood lead levels have decreased markedly since the late 1970s. In NHANES III, conducted during 1988–1994, few adults had levels > 20 μg/dL. OBJECTIVE: Our objective in this study was to determine the risk of mortality in relation to lower blood lead levels observed for adult participants of NHANES III. METHODS: We analyzed mortality information for 9,757 participants who had a blood lead measurement and who were ≥ 40 years of age at the baseline examination. Using blood lead levels categorized as < 5, 5 to < 10, and ≥ 10 μg/dL, we determined the relative risk of mortality from all causes, cancer, and cardiovascular disease through Cox proportional hazard regression analysis. RESULTS: Using blood lead levels < 5 μg/dL as the referent, we determined that the relative risk of mortality from all causes was 1.24 [95% confidence interval (CI), 1.05–1.48] for those with blood levels of 5–9 μg/dL and 1.59 (95% CI, 1.28–1.98) for those with blood levels ≥ 10 μg/dL (p for trend < 0.001). The magnitude of risk was similar for deaths due to cardiovascular disease and cancer, and tests for trend were statistically significant (p < 0.01) for both causes of death. CONCLUSION: In a nationally representative sample of the U.S. population, blood lead levels as low as 5–9 μg/dL were associated with an increased risk of death from all causes, cardiovascular disease, and cancer

    Cross-domain neurobiology data integration and exploration

    Get PDF
    Background: Understanding the biomedical implications of data from high throughput experiments requires solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding high level neurobiological functions

    Michigan molecular interactions r2: from interacting proteins to pathways

    Get PDF
    Molecular interaction data exists in a number of repositories, each with its own data format, molecule identifier and information coverage. Michigan molecular interactions (MiMI) assists scientists searching through this profusion of molecular interaction data. The original release of MiMI gathered data from well-known protein interaction databases, and deep merged this information while keeping track of provenance. Based on the feedback received from users, MiMI has been completely redesigned. This article describes the resulting MiMI Release 2 (MiMIr2). New functionality includes extension from proteins to genes and to pathways; identification of highlighted sentences in source publications; seamless two-way linkage with Cytoscape; query facilities based on MeSH/GO terms and other concepts; approximate graph matching to find relevant pathways; support for querying in bulk; and a user focus-group driven interface design. MiMI is part of the NIH's; National Center for Integrative Biomedical Informatics (NCIBI) and is publicly available at: http://mimi.ncibi.org

    Three allele combinations associated with Multiple Sclerosis

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) is an immune-mediated disease of polygenic etiology. Dissection of its genetic background is a complex problem, because of the combinatorial possibilities of gene-gene interactions. As genotyping methods improve throughput, approaches that can explore multigene interactions appropriately should lead to improved understanding of MS. METHODS: 286 unrelated patients with definite MS and 362 unrelated healthy controls of Russian descent were genotyped at polymorphic loci (including SNPs, repeat polymorphisms, and an insertion/deletion) of the DRB1, TNF, LT, TGFβ1, CCR5 and CTLA4 genes and TNFa and TNFb microsatellites. Each allele carriership in patients and controls was compared by Fisher's exact test, and disease-associated combinations of alleles in the data set were sought using a Bayesian Markov chain Monte Carlo-based method recently developed by our group. RESULTS: We identified two previously unknown MS-associated tri-allelic combinations: -509TGFβ1*C, DRB1*18(3), CTLA4*G and -238TNF*B1,-308TNF*A2, CTLA4*G, which perfectly separate MS cases from controls, at least in the present sample. The previously described DRB1*15(2) allele, the microsatellite TNFa9 allele and the biallelic combination CCR5Δ32, DRB1*04 were also reidentified as MS-associated. CONCLUSION: These results represent an independent validation of MS association with DRB1*15(2) and TNFa9 in Russians and are the first to find the interplay of three loci in conferring susceptibility to MS. They demonstrate the efficacy of our approach for the identification of complex-disease-associated combinations of alleles
    corecore