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Abstract

Background: Understanding the biomedical implications of data from high throughput experiments requires
solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide
sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding
high level neurobiological functions.

Results: Our work integrates molecular level data with high level biological functions and we present results using
anatomical structure as a scaffold. Our solution also allows the sharing of intermediate data exploration results with
other web applications, greatly increasing the power of cross-domain data exploration and mining.

Conclusions: The Flex-based PubAnatomy web application we developed enables highly interactive visual
exploration of literature and experimental data for understanding the relationships between molecular level
changes, pathways, brain circuits and pathophysiological processes. The prototype of PubAnatomy is freely
accessible at:[http://brainarray.mbni.med.umich.edu/Brainarray/prototype/PubAnatomy]

Background
Data driven research using high throughput experimen-
tal approaches, such as microarray, genome-wide asso-
ciation study, deep sequencing and structural and
functional imaging, is now one of the major driving
forces for the advancement of biomedical research. The
prevalence of high throughput experiments also brings
significant challenges in the analysis and the under-
standing of data. Frequently researchers only publish
and interpret a very small fraction of high throughput
data, focusing on statistically most significant data
points that they can establish plausible link with the tar-
get biological processes. Achieve comprehensive under-
standing of the high throughput data is very difficult
since most of the data points are not in the areas that
the researchers are familiar with. Linking unfamiliar

genes, SNPs, sequences and voxels to specific pathophy-
siological processes necessitates cross-domain data inte-
gration across different scales.
There are several major challenges inherent to cross-

domain data integration and mining. The first challenge
is to link concepts from different domains. Most public
and commercial databases and programs deal with only
closely related domains. For example, various molecular
biology databases presented in the annual database issue
of the journal Nucleic Acid Research deal only with
aspects of gene/protein structure and functions. There
are a number of databases that contain cross-domain
information such as disease-gene or gene-MeSH term
relationships [1]. However, these databases are not
usually suitable for in-depth data exploration and
mining due to their limited scope.
True cross-domain and cross-scale databases designed

for deep data exploration and mining are rare. The data
integration effort by the Biomedical Informatics
Research Network (BIRN) is an exceptional example
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[2,3]. Nonetheless, BIRN’s core data integration and
exploration solutions are only available to BIRN related
researchers. Since brain imaging data analysis for advan-
cing diagnosis and treatment of diseases is the original
purpose of BIRN, their solutions do not contain tight
integrations with molecular level data. Molecular level
data is now, arguably, the major source of high through-
put data in terms of the number of researchers involved
and publications.
Commercial solutions from companies such as Inge-

nuity (Ingenuity Pathway Analysis), GeneGo (MetaCore)
and Genomatix (GenomatixSuite and BiblioSphere) pro-
vide excellent integration different aspects of molecular
level events. However, while the commercial solutions’
reliance on expert curation enhances the accuracy of
their knowledge bases, it also places significant limita-
tions on their coverage of existing biomedical knowl-
edge. In fact, while these solutions are excellent for
exploring molecular level events, their gene-centered
nature and the significant lack of higher level conceptual
relationships (e.g., relationship between an organ struc-
ture and a disease) severely limits their usefulness in
cross-domain knowledge exploration and mining. Solu-
tions that capable of integrating the full spectrum of
data from molecular to organism levels are highly
desirable.
Another challenge of cross-domain data integration

and mining is that, even if concepts from different
domains are integrated, it is not easy to present them in
a way that facilitates both effective overviews and in-
depth investigation. Lists of results as well as graphic
presentations often fall short of promoting efficient
browsing and exploratory analysis. For example,
although the Medline database is arguably the most
comprehensive cross-domain knowledge base, most
Medline search engines present search results as linear
lists of returned records. It is hard to navigate long lists
and they do not facilitate discerning novel conceptual
relationships across different records, either. Even when
retrieved records are presented in sortable table format
(e.g., our GeneInfoMiner [4] and MarkerInfoFinder [5])
or in tree format after mapping them to ontology/MeSH
terms (e.g., GoPubMed [6] and our PubOnto [7]), it is
difficult to integrate different records for new relation-
ship discovery.
Graphical search and analysis solutions attempt to

help biomedical researchers to identify conceptual rela-
tionships among different records [8-14]. Medline search
solutions such as PubGene [11], ALIBABA [9], botXmi-
ner [10], and Chilibot [15] strive to help users to per-
ceive conceptual relationships more readily through
network graphs. Another popular graphic Medline solu-
tion, RefViz, provides a “galaxy” view based on similar-
ity-based clustering [16] but cannot provide real time

clustering due to computing speed limitation on typical
desktop computers. These solutions are more suitable
for knowledge exploration than list-style displays since
they enable researchers to grasp some complex biomedi-
cal conceptual relationships at a glance and aid them in
identifying related but often unexpected gene-oriented
conceptual relationships pertaining to the search topic
[9]. Nonetheless, apprehending meaning while browsing
and exploring in conceptual networks can quickly
become difficult as the number of concepts increases
beyond 50 or so. Thus users merely see a “spaghetti
ball” of many-to-many associations. More biologically
relevant visualization solutions with high computation
efficiency are needed.
The third major issue in existing data integration and

mining solutions is most of them has a closed architec-
ture. Few publicly available solutions allow users to uti-
lize their own data and/or analysis algorithms. Current
graphic Medline search engines only allow limited dis-
play parameter adjustment for built-in layouts, and it is
impossible for third party developers or users to add
new display methods for different search or exploration
requirements. In addition, most solutions cannot intero-
perate with each other, either. It is not possible for
researchers to take advantage of complementary solu-
tions seamlessly during data exploration and mining
processes. An open solution that enables other research-
ers and developers to integrate new data and functions
will be very important.
Here we present our work that aims to address some

of the issues described above by focusing on cross
domain data mining requirements in the area of neuro-
biology. Our solution uses the Medline database as the
backbone knowledge base but integrates several types of
important molecular and structural level data. The inte-
gration of cross-domain data outside of the Medline
database is achieved through a highly efficient custom
biomedical concept identification engine. We choose
anatomical structure as the framework for presenting an
overview of search results as well as the starting point
for more detailed investigations. Our solution adopts an
open architecture and enables interoperability with
other web applications based on a general schema. Our
prototype solution is called PubAnatomy and it is devel-
oped on the Adobe Flex platform for highly interactive
visual exploration.

Methods
A. Backbone knowledge base selection
Given the cost and the limitation of expert-based cura-
tion, we decided to use the Medline database as the
backbone database for cross-domain and cross-scale
data integration. The Medline database is without a
doubt the foremost biomedical knowledge base. It has
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the most complete coverage of all areas of biomedical
research among the existing databases. It is essential to
most, if not all, biomedical researchers for exploring
relevant topics and understanding the biological implica-
tions of their own data. Inherent conceptual relation-
ships in Medline abstracts, titles and MeSH terms can
be directly used for linking and understanding concepts
from different biological scales and biomedical research
domains. This is a critical advantage that is very hard to
match by an expert-curated system.

B. Identification of biomedical concepts in free text
Although Medline database contains comprehensive
information, it is essential to identify all useful biomedi-
cal concepts in Medline title and abstracts for the
purpose of cross-domain data integration and computer-
based analysis. While data from closely related biomedi-
cal research domains can often be linked to well defined
molecular IDs (e.g., gene ID), structure IDs (e.g., anato-
mical structure) or spatial coordinates (genomic location
or 3D anatomical locations), cross domain data integra-
tion frequently has to rely on the matching of different
free text strings representing the same concepts or
identifying relationships between different concepts. It is
essential that the free text strings in the Medline database
can be converted into computable forms for computer-
based mining and more effective data presentation.
In collaboration with the National Center for Biomedi-

cal Ontologies (NCBO), we developed a highly efficient
and flexible free text to biomedical concept mapping
solution called mgrep. It has three major advantages
over the publically available MetaMap Transfer (MMTx)
program developed by the National Library of Medicine
[http://mmtx.nlm.nih.gov]: 1) mgrep records the loca-
tion of each matched concept in the original text, which
is critical for in-depth text mining 2) mgrep is about 2
orders of magnitude faster than MMTx. It enables us to
process the Medline dataset frequently to keep up with
updates from various controlled vocabulary sources as
well as Medline on a single dual opteron server 3)
MMTx is designed to work with concepts in the Unified
Medical Language System alone but it is very straight-
forward for our solution to include and manage addi-
tional vocabularies, such as chemical compound names
and ontologies in the Open Biomedical Ontologies
(OBO) system [17].
In comparative analysis of concept mapping results

using all of the concepts in UMLS and 10,000 Medline
sentences as input, mgrep can identify about 95% of
best match concepts that MMTx can find. We believe
this level of sensitivity is sufficient for data integration
and exploration purposes. Although the details of our
work in this area have yet to be published, a fully func-
tional implementation of mgrep for on-the-fly free text

to OBO ontology mapping is available at [http://bioon-
tology.org/tools/oba.html]. Using mgep, we are able to
identify free text strings to unique concepts in full
UMLS and 10 or so OBO ontologies related to anatomy,
disease, environment, and chemicals in the Medline
database. We also identifies concepts related to genes,
genetic markers and cytobands using entity recognition
engines developed in earlier work [4,18,19]. The trans-
formation of highly variable free text strings to compu-
table unique biomedical concepts as well as the ability
to identify conceptual relationships based on UMLS and
ontologies provide the foundation for cross domain data
integration in our database.

C. Integrating data from external sources
The mgrep program’s ability to map free text strings to
unique biomedical concepts provides unlimited data
integration possibilities. For example, even in the
absence of common molecular and structure IDs, mgrep
can be applied to free text fields in a database to link
together information from different domains. While
such direct concept mapping will not always be correct,
we believe the benefits outweigh the shortcomings. Our
main goal is to facilitate novel hypothesis development
by present researchers with a more comprehensive view
of related issues rather than providing 100% accurate
conceptual relationships.
Naturally, our system supports integration of data out-

side of the Medline database. Our system’s data integra-
tion is based on widely used IDs and coordinates such
as Gene IDs and genomic locations. Since our prototype
is focusing on neurobiological problems, we also enable
the integration of data based on Allen Brain Atlas struc-
ture coordinates.
For example, in order to link Medline records to indi-

vidual brain structure names in the Allen Brain Atlas,
we downloaded canonical mouse and rat brain structure
nomenclatures in four brain atlases from the BrainInfo
website [http://braininfo.rprc.washington.edu/Nnont.
aspx]. The same page provides a mapping of each term
to the NeuroName2002 ontology for human and maca-
que neuroanatomy. We combined all distinct brain
structure name text strings from different atlases and
NeuroName into a list of 13233 test strings representing
various brain structures. Since one of the atlases anno-
tated by the BrainInfo website is the Dong atlas used by
the Allen Brain Project, we are able to map all text
strings from other atlases and NeuroName to brain
structure terms used by the Allen Brain Atlas based on
the NeuroName annotation provided by the BrainInfo
project.
To reduce false positives in the brain anatomical

structure mapping, we exclude abbreviations and require
each structure term to be at least 5 characters long.
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Then we use the lvg program to generate common lexi-
cal variations of each text string; we eliminate high fre-
quency words without distinctive meaning, e.g. “the”
and “of”, that we identified in an earlier full Medline
text analysis; and we generate word order permutations.
Next, using mgrep, all string variations are mapped to
the full Medline abstracts and titles (again discarding
meaningless high frequency words). To further increase
the sensitivity of identifying Medline records related to
brain structures, we also included records with MeSH
terms that can be directly mapped to structure terms in
the Allen Brain Atlas. The combination of text-string
and MeSH based mapping leads to close to 1 million
Medline abstracts that can be linked to structure names
in the Allen Brain Atlas for the December, 2008 down-
load of the Medline database.

D. Identify potentially important conceptual relationships
Our extensive concept mappings of the full Medline
database allow us to associate pairs of over 1 million
unique biomedical concepts from different biomedical
research domains based on concept co-occurrence at
either the abstract or the sentence level. However, such
concept co-occurrence association may lead to a large
number of false relationships that will reduce the effi-
ciency of data exploration and mining. However, short
of expert curation, there is no satisfactory way to extract
accurate conceptual relationships with decent sensitivity.
While significant progress has been made in the area of
natural language processing [20], the best solutions for
extracting conceptual relationships are still not ideal.
Since our goal is to help researchers to mine data

more effectively, we decided to compare the level/fre-
quency of a concept in a given context (e.g., Medline
records returned by a keyword search) to the concepts
level/frequency in the full database (e.g., Medline) to
rank the concept’s importance in the given context. The
underlying assumption is that the concepts ranked most
significant by this approach are the concepts most likely
to have meaningful relationships to the query term(s).
Two main advantages of this approach is it is computa-
tionally efficient and this approach can be applied to dif-
ferent data types.
For example, we use this approach to identify the

most significant disease terms from a list of Medline
records in the current solution as well as in our earlier
PubOnto web application [7]. Briefly, based on disease
concept mapping and MeSH term annotation of each
Medline abstract, we are able to pre-calculate the overall
frequency of each disease-related concept in the Med-
line database. The frequency of disease terms in each
set of returned Medline records, regardless of what
search terms and filters are used, can be ranked against
their background values using a number of different

ways on-the-fly. Consequently, users can easily identify
the most significant concepts associated with the search
results, out of a very large number of concepts that have
abstract or sentence level co-occurrence, for further
exploration. While there is no guarantee that such a
simple statistical approach can always identify the most
meaningful conceptual relationships, it provides a valu-
able starting point for data mining.
We also applied the same approach to rank genes that

are expressed in individual brain structures based on the
voxel level gene expression data from the Allen Brain
Atlas [21]. Since the Allen Brain Atlas provides 200
micron voxel level expression data for around 20,000
genes in each voxel, methods to select the most relevant
genes are necessary for more effective exploration of
functional relationships between genes and brain struc-
tures. One of the ranking methods we included in the
current solution is the ratio of the average gene expres-
sion level derived from all voxels belonging to a brain
structure and the average gene expression level based
on all voxels in the whole brain. This method turns out
to be quite effective in identifying genes that are highly
expressed in distinct brain regions. For example, the top
20 genes in each brain region identified by this simple
method show on the average of 21-fold higher expres-
sion level in a specific brain region than their average
expression level in the whole brain. Consequently,
researchers can easily identify genes that are most signif-
icantly expressed in a brain region to further explore
their functional relevance.

E. Use anatomical structure as a scaffold
Identification of brain anatomical structure concepts in
Medline records not only facilitates the integration of
data with brain structures, but also enables the use of
the Allen Brain Atlas as both an overview of the data
and a starting point for data exploration in a relevant
biological context. There are several reasons for select-
ing brain anatomical structure as the anchor for data
presentation and exploration: anatomical structure is a
biologically meaningful way for integrating cross-domain
data and literature since the majority of pathophysiolo-
gical processes in the brain can be linked to specific
brain structures; hierarchical and brain circuit level rela-
tionships among different brain structures (important
for detailed data exploration but not obvious for most
molecular biologists) are easily presented in brain anat-
omy; the presentation of anatomical structure at the
level of major brain nuclei is not as overwhelming as
complex network graph; and the fixed location of each
brain structure at a specific brain section plane allows
quick identification of relevant content.
Without a doubt, alternative perspectives of the same

data are needed. In PubAnatomy, we included a gene
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network view and various list views in our user inter-
face. These views are described in the RESULT section.
We also incorporate a new solution aiming at taking
advantage of compatible external applications for more
effective data exploration and it will be described in the
next section.

F. Interoperability with other applications
In order to share data among multiple applications, we
design a simple and effective schema to accommodate
the following requirements: data generation, individual
or group access permission, diversified data fields, cen-
tral dataset registry, and incremental updates of data
sets.
Our schema involves a set of five relational database

tables: 1) User account table: maintains the groups that
users belongs to; 2) Share permission table: the original
creator of a data set can set the access permission of the
data set, including individual accounts, group accounts,
and public; 3) Dataset definition table: keeps the title
and field names of each set; 4) Data storage table: the
ultimate table for storing data of each set; 5) Update
history table: tracks the history of set changes, including
the application, type of change (e.g., create/update/
delete), and the parameters used to determine the
change of a data set.
There are other alternatives in implementing the data

sharing and interoperability. Typically, they are session
data sharing and web service frameworks. The session-
based data sharing’s initial simplicity will be outweighed
by difficulties in cross domain data exchange due to var-
ious firewalls settings, organizational security settings
and browser requirements. The pure web service

approach is not satisfactory since function changes need
to be coordinated by different groups. The above data
sharing schema is more stable due to its ability to
accommodate future function changes once the same
schema is adopted across groups.

Results
A. Overall Architecture
The high level architecture of PubAnatomy follows the
Model-View-Controller- Service design pattern, as
shown in Figure 1. The view component (UI) is a Flex-
based Rich Internet application compatible with virtually
all major browsers. The UI is further divided into a ser-
ies of views that each is a reusable component. The con-
troller component handles user interactions (e.g.
keyword search, gene expression heatmap drawing) and
associated events, and call services to analyze and
exchange data. The service layer provides the bridge
between UI and the PubAnatomy backend or external
databases. There are already over 30 web services devel-
oped for PubAnatomy. Except services dedicated to pro-
viding UI information, the web services can also serve
other programs. The data models maintain datasets and
stores the state of the user exploration in PubAnatomy.
Overall, the decoupling of interaction, UI design, data
models and analysis enables us to handle nonlinear and
complex exploration process.

B. Data exploration and analysis functions
As a literature and data exploration tool, PubAnatomy
allows users to search literature and provides different
view and data tables for filtering and sense making. The
UI has three major components: 1) graphic views on the

Figure 1 PubAnatomy architecture The component-based open architecture of PubAnatomy. PubAnatomy is developed based on Adobe’s
latest Flex 3.0 platform. It follows Model-View-Controller-Service design pattern. It allows us to build a highly interactive user interface that is
compatible in virtually all major browsers.

Xuan et al. BMC Genomics 2010, 11(Suppl 3):S6
http://www.biomedcentral.com/1471-2164/11/S3/S6

Page 5 of 10



main window provide data overview and starting points
for data exploration; 2) tabulated data tabs in the bot-
tom contain information relevant to the current view
and selection, such as current brain structure, citation
set, selected genes, etc.; 3) Tabs and menus on top of
the main window are for selecting parameters and initi-
ating analysis. The right panel contains search functions,
user input and user history management. The following
is a brief description of functions and data currently
included in PubAnatomy:
1) BrainMap view for presenting related structural and

functional information. When a user issue a keyword
search, PubAnatomy will search literatures by using
either a local search engines that we implemented for
brain-related literature, or by calling the NCBI E-utilities
web service on PubMed. The related citations will be
mapped to brain structures using our pre-indexed
tables. A coronal brain section with the largest number
of PMID hit is than selected for the main window. Each
colored region is a brain structure. Users can click on a
structure to retrieve related Medline records. The color
of labels of each structure indicates if there are citations

mapped to the structure. When a different structure is
selected, contents in the data tabs under the main win-
dow, such as Mesh profiling, related disease, In situ
image mappings, and protein- protein interactions asso-
ciated with genes in the related Medline records will be
automatically updated.
2) Gene expression data display: Since the left and the

right side of the mouse brain are symmetric, the Brain-
Map view can be used to visualize multiple data sources
on the same brain image section. For example, a user
can select a gene associated with a Medline record in
the Gene Tab under the main window and choose to
draw a gene expression heatmap based on Allen Brain
Atlas 200 micron voxel gene expression data on the left
brain while keeping the citation mapping on the right
half of the map (Figure 2: Comt gene is selected) Such
expression heatmap overlay on actual brain image allows
researchers to easily select structures for further investi-
gation based on the overview of gene expression across
different annotated structures.
3) Brain circuits: The brain map can also display brain

structures that are know to be connected to each other.

Figure 2 PubAnatomy user interface overview PubAnatomy provides different view and data tables for filtering and sense making. Its UI has
three major components: 1) graphic views on the main window provide data overview (such as gene expression data display) and starting
points for data exploration 2) tabulated data tabs in the bottom contain information relevant to the current view and selection, such as current
brain structure, citation set, selected genes, etc.; 3) Tabs and menus on top of the main window are for selecting parameters and initiating
analysis. The right panel contains search functions, user input and user history management.
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Right clicking a brain structure will show a structure-
specific context menu, and the user can choose to show
a circuit that links current region to other brain regions.
4) Gene expression correlation network: PubAnatomy

can draw dynamic network graphs for genes that are
highly correlated with a selected gene based on the
Allen Brain Atlas 200 micron voxel gene expression
data (Figure 3). The network graph is also expandable.
Users can right click on a gene node and choose to
expand the network by including top ranked genes of
the newly selected gene. Double clicking on a gene node
will show information of edges related to this gene in
the expression correlation table.
5) Data integration and mappings: Our solution inte-

grates data from many sources and provides dynamic
linkage among them. For example, the Mesh profiling
tab presents MeSH terms that differentiate the current
citation set from whole Medline corpus using a number
of different criteria. The MiMI interaction tab shows
genes known to be interacting with genes annotated
with the current Medline citation set using information
from Michigan Molecular Interactions (MiMI) database.

We have implemented a total of 9 data integration
and analysis tabs, with each tab pulling information
from multiple data sources for the current Medline
citation set on- the-fly. Because of the flexible architec-
ture and component-based design, PubAnatomy can
easily accommodate new resources into the service
layer and the UI. Since no data is embedded in the
PubAnatomy client and PubAnatomy only requests
information as needed, the program is very lightweight
thus it can handle fairly large datasets with high effi-
ciency. In addition, data tabs are linked to the content
and selection of the main window: once the citation or
gene set is changed, all associated tabs will automati-
cally update.
6) Auxiliary tools: we have built charting tools (e.g. pie

chart, line chart, etc) in PubAnatomy so that researchers
can examine the values or distributions of current data-
sets without making extra effort to export the data to
desktop tools. An image section selection tool is also
provided to allow users to pin down a specific section of
interest. Users can also customize the views, data tabs
and context menu to fit their exploration process better.

Figure 3 Gene network linked by expression correlation PubAnatomy can draw dynamic network graphs for genes that are highly
correlated with a selected gene based on the Allen Brain Atlas 200 micron voxel gene expression data. The network graph is also expandable.
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C. Interoperability with other applications
PubAnatomy emphasize the interoperability by adopting
the aforementioned data sharing and user management
schema. When a user login from PubAnatomy, he/she can
export datasets, e.g. citation PMIDs, to a central database.
He can name the dataset, record its parameters, write
description and choose whether to share the dataset.
Other applications or PubAnatomy itself can retrieve the
dataset from the central database for additional analysis.
As an example, Figure 4 demonstrates PubOnto, another
program developed in our group, imports a set of PMIDs
exported from PubAnatomy and maps it to Gene Ontol-
ogy for identifying potential cellular and molecular pro-
cesses related to a brain structure.
Similarly, PubAnatomy can import datasets generated

by other programs as well. Such cross-application inter-
operability greatly enhances the ability to perform in-
depth data mining by taking advantage of functionally
complementary applications.

D. Use case example
To illustrate how PubAnatomy can help the cross
domain exploration of literature and data, we use a real

world example of a researcher who seeks to uncover
how any of the 20 genes found to be associated with
CNV (copy number variant) sites in schizophrenic
patients may be related to schizophrenia [22]. She
queries PubAnatomy for “schizophrenia” and retrieves
hundreds of Medline records mapped to different brain
structures. She simultaneously sees other perspectives
on these records, such as significantly occurring MeSH
terms, genes and diseases associated with the records.
She scans the PubAnatomy Gene Tab to identify genes
associated with these Medline records and finds one
from her list – Grin1. With a keystroke, she invokes
PubAnatomy to paint this gene’s expression levels on
the brain map image. From pseudo color expression
level coding, the researcher sees immediately that
Ammon’s Horn has high expressions of Grin1, an area
that the expression of DISC1 gene (Disrupted-In-Schizo-
phrenia 1) also concentrates [23]. With one mouse click
on this region, the researcher now filters down to arti-
cles, diseases, and genes relevant only to this region (29
citations). She saves the citations for later and now
seeks to uncover other types of relationships between
the deleted genes and schizophrenia, as most of them

Figure 4 Data sharing with other programs PubAnatomy emphasize the interoperability by adopting the aforementioned data sharing and
user management schema. It allows a users to export a dataset, name the dataset, record its parameters, write description and choose whether
to share the dataset. Other applications or PubAnatomy per se can retrieve the dataset from the central database for additional analysis. As this
figure demonstrates PubOnto, another program developed in our group, imports a set of PMIDs exported from PubAnatomy and maps it to
Gene Ontology for identifying potential cellular and molecular processes related to a brain structure.
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did not show up as genes associated with the retrieved
Medline records. She guesses that protein-protein rela-
tionships may connect the deletion genes (one gene list)
and genes in the retrieved Medline records (another
list). She clicks the “Find Path for All Genes” function
in the right click menu of the Gene Tab, which supports
finding potential protein-protein relationships, and then
paste the 20 deletion gene list. Results show that FYN,
which the researcher had not previously considered to
be relevant, interacts with genes in both lists and was
reported to be related to schizophrenia [24-28].
Though such quick explorations, the researcher has

obtained some promising leads that are well worth
detailed investigation. As the use case demonstrates,
besides the fact that the researcher can efficiently find
these leads, the integration of cross domain data and lit-
erature in PubAnatomy in fact presented multiple direc-
tions for exploration that will be hard to perform
systematically for each possibility if the related data are
distributed in different locations in the absence of a uni-
fied interface.

Discussion
The purpose of the cross-domain data integration effort
described here is to provide a more effective solution
for understanding the biological significance of high
throughput data.
The PubAnatomy prototype we developed is a novel

solution that uses the mouse brain atlas as a framework
for integrating literature, gene expression data and con-
ceptual relationships from external databases.
Top on the list are the identification of important

physiological processes, behavioral processes, and small
molecules related to each brain structure. For physiolo-
gical and behavioral processes, we choose to use UMLS
concepts belonging to “Biologic Function” and “Beha-
vior” semantic categories of the UMLS Semantic Net-
work. Similar to our implementation for brain structure
to disease associations, we will provide multiple ranking
results for associating these concepts to individual brain
structures. For integrating small molecule information,
the terms for concept mapping will initially come from
UMLS concepts belong to the “Chemical” semantic
group, compounds and substances from PubChem, and
the drug name list from Medline Plus. Our concept
mapping solution provides highly efficient and straight-
forward data integration based on concept matching.
However, this solution has an inherent shortcoming:
context information for each concept is not automati-
cally considered. In different contexts, the same text
string may refer to different concepts. For example, the
text string “cold” may refer to either the concept “cold
in temperature” or the concept “symptom of catching a
cold” depending on the context. To increase the rate of

correct mappings for such ambiguous text strings, we
plan to apply the context- based disambiguation
approach used in our gene and genetic marker name
recognition engines [18,19] .
We are also planning to add a functionality to com-

pare the gene expression correlation network included
in PubAnatomy with the protein-protein interaction net-
work defined in the MiMI database [29,30]. Currently
the gene expression correlations and protein interaction
networks are displayed in separate applications (PubA-
natomy and MiMI CytoScape plugin). The separate
applications make it difficult to see relationships
between gene expression correlations and protein inter-
action networks. A relatively simple solution is to make
the MiMI CytoScape plugin capable of importing gene-
gene relation tables from PubAnatomy. Then one could
use CytoScape’s built in network comparison function
to identify highly correlated genes whose protein pro-
ducts directly interact with each other or can be linked
in a protein-protein interaction network within a given
distance. Such ability to compare networks derived from
different data sets related to gene/protein or other types
of concepts will greatly enhance researchers’ capability
to identify potentially interesting relationships for
hypothesis development. The key to this enhancement is
cross-application interoperability of the same type as we
developed for PubAnatomy and PubOnto. We are
actively working with our colleagues in the National
Center for Integrative Biomedical Informatics (NCIBI)
to achieve interoperability across all major applications,
including the MiMI CytoScape plugin, developed at
NCIBI.
Besides cross-application interoperability, it is essential

to give researchers and third party developers the cap-
ability to extend PubAnatomy. Researchers and develo-
pers should be able to add new conceptual relationships,
experimental data, data analysis functionality, and dis-
play functionality. A cross-domain data integration and
exploration solution is not likely to be successful with-
out participation from the target research community.
No single group or company has the resources to inte-
grate useful conceptual relationships and data from all
related research areas. We are committed to generate
detailed documentation describing the API for PubAnat-
omy before its formal public release around July 2009.
We are looking forward to working with research
groups interested in integrating mouse brain functional
imaging data or higher resolution brain substructure
data into the PubAnatomy system.
Lastly, although our current prototype is based on

Allen Brain Atlas mouse brain structure annotation, the
technical solutions we developed can be readily applied
to annotated voxel data from any systems. Our main
goal for the next phase is to integrate data from the

Xuan et al. BMC Genomics 2010, 11(Suppl 3):S6
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Visible Human Projects [31,32]. We expect the integra-
tion of human anatomy data and the related functional
and structural data from molecular to organism levels
will greatly facilitate the understanding of high through-
put data and the development of novel hypotheses.
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