47 research outputs found

    The role of calcium (source & content) on the in vitro behaviour of sol–gel quaternary glass series

    Get PDF
    To highlight the effect of salt precursors on the final properties, bioactivity and biocompatibility, five quaternary (Si–Ca–P–Na) glass compositions were successfully prepared through two distinct rapid sol–gel routes; one using acetate salt precursors (A) catalysed by nitric acid, and the other using nitrate salts (N) and citric acid as a catalyst. The sols dried rapidly, and stabilised at 550 & 800 °C to be characterised by X–ray diffraction (XRD), Magic angle spinning–Nuclear magnetic resonance (29Si MAS–NMR) and Fourier transform infra–red spectroscopy (FTIR). Upon immersion in simulated body fluid (SBF), hydroxyapatite (HAp) formation was initially enhanced by increasing Ca–content up to 40 mol%, but the formation of calcite was favoured with further increments of Ca to 45 and 48 mol%. The A–glasses exhibited lower density and lower network connectivity compared with N–glasses. The chemical surface modifications after 4 h in SBF were more evident for N–glasses in comparison to A–glasses. The biocompatibility is favoured for the samples treated at 800 °C and for the samples of the higher silica contents

    Robocasting of Cu 2+ & La 3+ doped sol–gel glass scaffolds with greatly enhanced mechanical properties: Compressive strength up to 14 MPa

    Get PDF
    This research details the successful fabrication of scaffolds by robocasting from high silica sol–gel glass doped with Cu 2+ or La 3+ . The parent HSSGG composition within the system SiO 2 –CaO–Na 2 O–P 2 O 5 [67% Si – 24% Ca – 5% Na – 4% P (mol%)] was doped with 5 wt% Cu 2+ or La 3+ (Cu5 and La5). The paper sheds light on the importance of copper and lanthanum in improving the mechanical properties of the 3–D printed scaffolds. 1 h wet milling was sufficient to obtain a bioglass powder ready to be used in the preparation of a 40 vol% solid loading paste suitable for printing. Moreover, Cu addition showed a small reduction in the mean particle size, while La exhibited a greater reduction, compared with the parent glass. Scaffolds with macroporosity between 300 and 500 µm were successfully printed by robocasting, and then sintered at 800 °C. A small improvement in the compressive strength (7–18%) over the parent glass accompanied the addition of La. However, a much greater improvement in the compressive strength was observed with Cu addition, up to 221% greater than the parent glass, with compressive strength values of up to ∼14 MPa. This enhancement in compressive strength, around the upper limit registered for human cancellous bones, supports the potential use of this material in biomedical applications. Statement of Significance: 3D porous bioactive glass scaffolds with greatly improved compressive strength were fabricated by robocasting from a high silica sol–gel glasses doped with Cu 2+ or La 3+ . In comparison to the parent glass, the mechanical performance of scaffolds was greatly improved by copper-doping (>220%), while a modest increase of ∼9% was registered for lanthanum-doping. Doping ions (particularly La 3+ ) acted as glass modifiers leading to less extents of silica polymerisation. This favoured the milling of the glass powders and the obtaining of smaller mean particle sizes. Pastes with a high solid loading (40 vol%) and with suitable rheological properties for robocasting were prepared from all glass powders. Scaffolds with dimensions of 3 × 3 × 4 mm and macro-pore sizes between 300 and 500 µm were fabricated

    Robocasting: Prediction of ink printability in solgel bioactive glass

    Get PDF
    Bioactive glass powders synthesized by solgel are usually porous and exhibit high specific surface areas, conferring them poor ability for scaffolds fabrication using colloidal processing approaches. The difficulties associated with colloidal processing of solgel glass have hindered so far the processing of 3-D scaffolds by robocasting. This research paper investigates the importance of calcination temperature (CT) and balls to powder ratio (BPR) used upon wet milling on the maximum achievable solid loading in aqueous media. The effects of CT, BPR, and solid loading on the flow behavior and viscoelastic properties of the suspensions/pastes were evaluated in this preliminary work. The aim is to disclose the sets of experimental variables that are most promising for the formulation of printable inks, and open the way for the future fabrication of porous scaffolds by robocasting and other 3-D additive manufacturing techniques

    Robocasting of ceramic glass scaffolds: Sol–gel glass, new horizons

    Get PDF
    This article reports the first robocasting of a sol–gel based glass ceramic scaffold. Sol–gel bioactive glass powders usually exhibit high volume fractions of meso– and micro–porosities, bad for colloidal processing as this adsorbs significant portion of the dispersing medium, affecting dispersion and flow. We circumvent these practical difficulties, to achieve pastes with particle size distributions, high solids loading and appropriate rheological properties for extrusion through fine nozzles for robocasting. Scaffolds with different macro-pore sizes (300–500 μm) with solid loadings up to 40 vol.% were robocast. The sintered (800 °C, 2 h) scaffolds exhibited compressive strength of 2.5–4.8 MPa, formed hydroxyapatite after 72 h in SBF, and had no cytotoxicity and a considerable MG63 cells viability rate. These features make the scaffolds promising candidates for tissue engineering applications and worthy for further in vivo investigations

    Sol-gel coatings for metallic prosthesis from methyl-modified alkoxysilanes: balance between protection and bioactivation

    Get PDF
    The reported osteogenic properties of the hybrid silica sol-gel materials make these compositions perfect candidates for bone tissue engineering applications. The aim of this study was the synthesis and characterisation of hybrid silica coatings, obtained using mixtures of tetraethyl orthosilicate (TEOS) and three different methyl-modified alkoxysilanes: trimethoxymethylsilane (MTMS), dimethyldiethoxysilane (DMDES) or polydimethylsiloxane (PDMS). A comparison of the properties of these materials can reveal the best candidate for the coatings on metallic prostheses. After optimising the synthesis parameters, the developed coatings were characterised using Fourier transform infrared spectrometry (FT-IR), 1H and 29Si solid-state nuclear magnetic resonance (1H-NMR and 29Si-MNR), cross-cut tests, scanning electron microscopy (SEM), contact angle measurements, optical profilometry, hydrolytic degradation tests and electrochemical corrosion analysis. Homogeneous and well-adhering coatings were obtained using the three methyl-modified reagents. However, different degrees of protection against corrosion, different hydrophilicity and varying degradation kinetics were observed for different precursors. The MTMS-based coating showed the highest hydrophilicity and degradation kinetics; these properties can be associated with increased bioactivity (Si release). In contrast, the PDMS and DMDES-based coatings showed augmented resistance to corrosion and lower permeability to water and, consequently, improved protection of metallic surfaces. From the physicochemical point of view, all these materials displayed interesting characteristics, relevant for coatings to be used in biomedical applications

    Red ruby glass from gold nanoparticles obtained by LASiS – a new approach

    Get PDF
    Currently, most of the red colored glasses are still produced using cadmium sulfoselenide, despite its high toxicity. Alternative solutions, more environmentally friendly, have been sought, most of them going through the use of gold or copper nanoparticle, the color being obtained by striking. This work presents a new methodology for production of a red colored glass by the incorporation of gold nanoparticles in the melt, trying to take advantage of an amorphous silica layer involving the nanoparticles. Gold nanoparticles (AuNP) were produced by laser ablation synthesis in solution (LASiS), using a solution of tetraethyl orthosilicate (TEOS) and isopropanol (IPA). A xerogel was prepared using the TEOS:IPA:AuNp suspension, mixed with a alkaline-earth aluminosilicate colorless glass and melted at 1350 °C producing a glass with an intense and homogeneous ruby red color without the need of a striking stage.publishe

    Total and Subtypes of Dietary Fat Intake and Its Association with Components of the Metabolic Syndrome in a Mediterranean Population at High Cardiovascular Risk

    Get PDF
    Background: The effect of dietary fat intake on the metabolic syndrome (MetS) and in turn on cardiovascular disease (CVD) remains unclear in individuals at high CVD risk. Objective: To assess the association between fat intake and MetS components in an adult Mediterranean population at high CVD risk. Design: Baseline assessment of nutritional adequacy in participants (n = 6560, men and women, 55-75 years old, with overweight/obesity and MetS) in the PREvención con DIeta MEDiterránea (PREDIMED)-Plus randomized trial. Methods: Assessment of fat intake (total fat, monounsatured fatty acids: MUFA, polyunsaturated fatty acids: PUFA, saturated fatty acids: SFA, trans-fatty acids: trans-FA, linoleic acid, α-linolenic acid, and ω-3 FA) using a validated food frequency questionnaire, and diet quality using 17-item Mediterranean dietary questionnaire and fat quality index (FQI). Results: Participants in the highest quintile of total dietary fat intake showed lower intake of energy, carbohydrates, protein and fiber, but higher intake of PUFA, MUFA, SFA, TFA, LA, ALA and ω-3 FA. Differences in MetS components were found according to fat intake. Odds (5th vs. 1st quintile): hyperglycemia: 1.3-1.6 times higher for total fat, MUFA, SFA and ω-3 FA intake; low high-density lipoprotein cholesterol (HDL-c): 1.2 higher for LA; hypertriglyceridemia: 0.7 lower for SFA and ω-3 FA intake. Conclusions: Dietary fats played different role on MetS components of high CVD risk patients. Dietary fat intake was associated with higher risk of hyperglycemia

    Eculizumab improves fatigue in refractory generalized myasthenia gravis

    Get PDF

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    Seafood Consumption, Omega-3 Fatty Acids Intake, and Life-Time Prevalence of Depression in the PREDIMED-Plus Trial

    Get PDF
    Background: The aim of this analysis was to ascertain the type of relationship between fish and seafood consumption, omega-3 polyunsaturated fatty acids (ω-3 PUFA) intake, and depression prevalence. Methods: Cross-sectional analyses of the PREDIMED-Plus trial. Fish and seafood consumption and ω-3 PUFA intake were assessed through a validated food-frequency questionnaire. Self-reported life-time medical diagnosis of depression or use of antidepressants was considered as outcome. Depressive symptoms were collected by the Beck Depression Inventory-II. Logistic regression models were used to estimate the association between seafood products and ω-3 PUFA consumption and depression. Multiple linear regression models were fitted to assess the association between fish and long-chain (LC) ω-3 PUFA intake and depressive symptoms. Results: Out of 6587 participants, there were 1367 cases of depression. Total seafood consumption was not associated with depression. The odds ratios (ORs) (95% confidence intervals (CIs)) for the 2nd, 3rd, and 4th quintiles of consumption of fatty fish were 0.77 (0.63–0.94), 0.71 (0.58–0.87), and 0.78 (0.64–0.96), respectively, and p for trend = 0.759. Moderate intake of total LC ω-3 PUFA (approximately 0.5–1 g/day) was significantly associated with a lower prevalence of depression. Conclusion: In our study, moderate fish and LC ω-3 PUFA intake, but not high intake, was associated with lower odds of depression suggesting a U-shaped relationship
    corecore