17,130 research outputs found

    An updated catalog of OH-maser-emitting planetary nebulae

    Full text link
    Aims. We studied the characteristics of planetary nebulae (PNe) that show both OH maser and radio continuum emission (hereafter OHPNe). These have been proposed to be very young PNe, and therefore, they could be key objects for understanding the formation and evolution of PNe. Methods. We consulted the literature searching for interferometric observations of radio continuum and OH masers toward evolved stars, including the information from several surveys. We also processed radio continuum and OH maser observations toward PNe in the Very Large Array data archive. The high positional accuracy provided by interferometric observations allow us to confirm or reject the association between OH maser and radio continuum emission. Results. We found a total of six PNe that present both OH maser and radio continuum emissions, as confirmed with radio interferometric observations. These are bona fide OHPNe. The confirmed OHPNe present a bipolar morphology in resolved images of their ionized emission at different wavelengths, suggesting that the OH maser emission in PNe is related to nonspherical mass-loss phenomena. The OH maser spectra in PNe present a clear asymmetry, tending to show blueshifted emission with respect to the systemic velocity. Their infrared colors suggest that most of these objects are very young PNe. OHPNe do not form a homogeneous group, and seem to represent a variety of different evolutionary stages. We suggest that OH masers pumped in the AGB phase may disappear during the post-AGB phase, but reappear once the source becomes a PN and its radio continuum emission is amplified by the OH molecules. Therefore, OH maser emission could last significantly longer than the previously assumed 1000 yr after the end of the AGB phase. This maser lifetime may be longer in PNe with more massive central stars, which ionize a larger amount of gas in the envelope.Comment: 16 pages, 5 figures, 4 tables. Accepted for publication by Astronomy & Astrophysic

    Global constraints on muon-neutrino non-standard interactions

    Get PDF
    The search for new interactions of neutrinos beyond those of the Standard Model may help to elucidate the mechanism responsible for neutrino masses. Here we combine existing accelerator neutrino data with restrictions coming from a recent atmospheric neutrino data analysis in order to lift parameter degeneracies and improve limits on new interactions of muon neutrinos with quarks. In particular we re-consider the results of the NuTeV experiment in view of a new evaluation of its systematic uncertainties. We find that, although constraints for muon neutrinos are better than those applicable to tau or electron neutrinos, they lie at the few ×102\times 10^{-2} level, not as strong as previously believed. We briefly discuss prospects for further improvement.Comment: 10 pages, 5 figures, 2 table

    Invisible decays of ultra-high energy neutrinos

    Get PDF
    Gamma-ray bursts (GRBs) are expected to provide a source of ultra high energy cosmic rays, accompanied with potentially detectable neutrinos at neutrino telescopes. Recently, IceCube has set an upper bound on this neutrino flux well below theoretical expectation. We investigate whether this mismatch between expectation and observation can be due to neutrino decay. We demosntrate the phenomenological consistency and theoretical plausibility of the neutrino decay hypothesis. A potential implication is the observability of majoron-emitting neutrinoless double beta decay.Comment: 11 pages, 3 figures. To appear in Frontiers High Energy Physic

    Harnack's Inequality for Parabolic De Giorgi Classes in Metric Spaces

    Full text link
    In this paper we study problems related to parabolic partial differential equations in metric measure spaces equipped with a doubling measure and supporting a Poincare' inequality. We give a definition of parabolic De Giorgi classes and compare this notion with that of parabolic quasiminimizers. The main result, after proving the local boundedness, is a scale and location invariant Harnack inequality for functions belonging to parabolic De Giorgi classes. In particular, the results hold true for parabolic quasiminimizers

    On the description of non-unitary neutrino mixing

    Get PDF
    Neutrino oscillations are well established and the relevant parameters determined with good precision, except for the CP phase, in terms of a unitary lepton mixing matrix. Seesaw extensions of the Standard Model predict unitarity deviations due to the admixture of heavy isosinglet neutrinos. We provide a complete description of the unitarity and universality deviations in the light neutrino sector. Neutrino oscillation experiments involving electron or muon neutrinos and anti-neutrinos are fully described in terms of just three new real parameters and a new CP phase, in addition to the ones describing oscillations with unitary mixing. Using this formalism we describe the implications of non-unitarity for neutrino oscillations and summarize the model-independent constraints on heavy neutrino couplings that arise from current experiments.Comment: 28 pages, 8 figures, typos corrected, modified bounds on non-unitarity parameters, new figs 3 and
    corecore