17,340 research outputs found

    Phase Diagram of the Two-Leg Kondo Ladder

    Full text link
    The phase diagram of the two-leg Kondo ladder is investigated using computational techniques. Ferromagnetism is present, but only at small conduction electron densities and robust Kondo coupling JJ. For densities n0.4n\gtrsim0.4 and any Kondo coupling, a paramagnetic phase is found. We also observed spin dimerization at densities nn=1/4 and nn=1/2. The spin structure factor at small JJ peaks at q\vec{q}=(2n,0)π(2n,0)\pi for n0.5n\lesssim0.5, and at q\vec{q}=(n,1)π(n,1)\pi for n0.5n\gtrsim0.5. The charge structure factor suggests that electrons behave as free particles with spin-1/2 (spin-0) for small (large) JJ.Comment: 5 pages, 4 fig

    Electronic Griffiths phase of the d=2 Mott transition

    Full text link
    We investigate the effects of disorder within the T=0 Brinkman-Rice (BR) scenario for the Mott metal-insulator transition (MIT) in two dimensions (2d). For sufficiently weak disorder the transition retains the Mott character, as signaled by the vanishing of the local quasiparticles (QP) weights Z_{i} and strong disorder screening at criticality. In contrast to the behavior in high dimensions, here the local spatial fluctuations of QP parameters are strongly enhanced in the critical regime, with a distribution function P(Z) ~ Z^{\alpha-1} and \alpha tends to zero at the transition. This behavior indicates a robust emergence of an electronic Griffiths phase preceding the MIT, in a fashion surprisingly reminiscent of the "Infinite Randomness Fixed Point" scenario for disordered quantum magnets.Comment: 4+ pages, 5 figures, final version to appear in Physical Review Letter

    Effective model of the electronic Griffiths phase

    Full text link
    We present simple analytical arguments explaining the universal emergence of electronic Griffiths phases as precursors of disorder-driven metal-insulator transitions in correlated electronic systems. A simple effective model is constructed and solved within Dynamical Mean Field Theory. It is shown to capture all the qualitative and even quantitative aspects of such Griffiths phases.Comment: 9 pages, 7 figures, one reference corrected; minor corrections include

    A Stress/Displacement Virtual Element Method for Plane Elasticity Problems

    Full text link
    The numerical approximation of 2D elasticity problems is considered, in the framework of the small strain theory and in connection with the mixed Hellinger-Reissner variational formulation. A low-order Virtual Element Method (VEM) with a-priori symmetric stresses is proposed. Several numerical tests are provided, along with a rigorous stability and convergence analysis

    Chiral spin-orbital liquids with nodal lines

    Get PDF
    Strongly correlated materials with strong spin-orbit coupling hold promise for realizing topological phases with fractionalized excitations. Here we propose a chiral spin-orbital liquid as a stable phase of a realistic model for heavy-element double perovskites. This spin liquid state has Majorana fermion excitations with a gapless spectrum characterized by nodal lines along the edges of the Brillouin zone. We show that the nodal lines are topological defects of a non-Abelian Berry connection and that the system exhibits dispersing surface states. We discuss some experimental signatures of this state and compare them with properties of the spin liquid candidate Ba_2YMoO_6.Comment: 5 pages + supplementary materia

    Strongly Inhomogeneous Phases and Non-Fermi Liquid Behavior in Randomly Depleted Kondo Lattices

    Full text link
    We investigate the low-temperature behavior of Kondo lattices upon random depletion of the local ff-moments, by using strong-coupling arguments and solving SU(NN) saddle-point equations on large lattices. For a large range of intermediate doping levels, between the coherent Fermi liquid of the dense lattice and the single-impurity Fermi liquid of the dilute limit, we find strongly inhomogeneous states that exhibit distinct non-Fermi liquid characteristics. In particular, the interplay of dopant disorder and strong interactions leads to rare weakly screened moments which dominate the bulk susceptibility. Our results are relevant to compounds like Ce_{x}La_{1-x}CoIn_5 and Ce_{x}La_{1-x}Pb_3Comment: 4 pages, 5 figure

    The reactor antineutrino anomaly and low energy threshold neutrino experiments

    Full text link
    Short distance reactor antineutrino experiments measure an antineutrino spectrum a few percent lower than expected from theoretical predictions. In this work we study the potential of low energy threshold reactor experiments in the context of a light sterile neutrino signal. We discuss the perspectives of the recently detected coherent elastic neutrino-nucleus scattering in future reactor antineutrino experiments. We find that the expectations to improve the current constraints on the mixing with sterile neutrinos are promising. We also analyse the measurements of antineutrino scattering off electrons from short distance reactor experiments. In this case, the statistics is not competitive with inverse beta decay experiments, although future experiments might play a role when compare it with the Gallium anomaly.Comment: 9 pages, 6 figures, 1 table, matches published versio

    Inter- and intra-layer excitons in MoS2_2/WS2_2 and MoSe2_2/WSe2_2 heterobilayers

    Get PDF
    Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems posses inter or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single-layers. In this study, we report the electronic structure and the absorption spectra of MoS2_2/WS2_2 and MoSe2_2/WSe2_2 HBLs from first-principles calculations. We explore the spectral positions, binding energies and the origins of inter and intralayer excitons and compare our results with experimental observations. The absorption spectra of the systems are obtained by solving the Bethe-Salpeter equation on top of a G0_0W0_0 calculation which corrects the independent particle eigenvalues obtained from density functional theory calculations. Our calculations reveal that the lowest energy exciton in both HBLs possesses interlayer character which is decisive regarding their possible device applications. Due to the spatially separated nature of the charge carriers, the binding energy of inter-layer excitons might be expected to be considerably smaller than that of intra-layer ones. However, according to our calculations the binding energy of lowest energy interlayer excitons is only \sim 20\% lower due to the weaker screening of the Coulomb interaction between layers of the HBLs. Therefore, it can be deduced that the spectral positions of the interlayer excitons with respect to intralayer ones are mostly determined by the band offset of the constituent single-layers. By comparing oscillator strengths and thermal occupation factors, we show that in luminescence at low temperature, the interlayer exciton peak becomes dominant, while in absorption it is almost invisible.Comment: 17 pages, 4 figure
    corecore