185 research outputs found

    Cell Shortening and Calcium Homeostasis Analysis in Adult Cardiomyocytes via a New Software Tool

    Get PDF
    Intracellular calcium (Ca2+) is the central regulator of heart contractility. Indeed, it couples the electrical signal, which pervades the myocardium, with cardiomyocytes contraction. Moreover, alterations in calcium management are the main factors contributing to the mechanical and electrical dysfunction observed in failing hearts. So, simultaneous analysis of the contractile function and intracellular Ca2+ is indispensable to evaluate cardiomyocytes activity. Intracellular Ca2+ variations and fraction shortening are commonly studied with fluorescent Ca2+ indicator dyes associated with microscopy techniques. However, tracking and dealing with multiple files manually is time-consuming and error-prone and often requires expensive apparatus and software. Here, we announce a new, user-friendly image processing and analysis tool, based on ImageJ-Fiji/MATLAB® software, to evaluate the major cardiomyocyte functional parameters. We succeeded in analyzing fractional cell shortening, Ca2+ transient amplitude, and the kinematics/dynamics parameters of mouse isolated adult cardiomyocytes. The proposed method can be applied to evaluate changes in the Ca2+ cycle and contractile behavior in genetically or pharmacologically induced disease models, in drug screening and other common applications to assess mammalian cardiomyocyte functions

    Gut microbiota composition and frailty in elderly patients with Chronic Kidney Disease

    Get PDF
    Background Frailty is common in older patients affected by chronic kidney disease (CKD). Since gut microbiota (gMB) may contribute to frailty, we explored possible associations between gMB and frailty in CKD. Methods We studied 64 CKD patients (stage 3b-4), categorized as frail (F, 38) and not frail (NF, 26) according to Fried criteria, and 15 controls (C), all older than 65 years. In CKD we assessed serum C-reactive protein, blood neutrophil/lymphocyte ratio, Malnutrition-inflammation Score (MIS); gMB was studied by denaturing gel gradient electrophoresis (DGGE), high-throughput sequencing (16S r-RNA gene), and quantitative real-time PCR (RT-PCR). Results No differences in alpha diversity between CKD and C and between F and NF patients emerged, but high-throughput sequencing showed significantly higher abundance of potentially noxious bacteria (Citrobacter, Coprobacillus, etc) and lower abundance of saccharolytic and butyrate-producing bacteria (Prevotella spp., Faecalibacterium prausnitzii, Roseburia spp.), in CKD respect to C. Mogibacteriaceae family and Oscillospira genus abundance was positively related to inflammatory indices in the whole CKD cohort, while that of Akkermansia, Ruminococcus and Eubacterium genera was negatively related. Compared with NF, in F there was a higher abundance of some bacteria (Mogibacteriacee, Coriobacteriacee, Eggerthella, etc), many of which have been described as more abundant in other diseases. Conclusions These results suggest that inflammation and frailty could be associated to gMB modifications in CKD

    Bioinspired negatively charged calcium phosphate nanocarriers for cardiac delivery of MicroRNAs

    No full text
    Aim: To develop biocompatible and bioresorbable negatively charged calcium phosphate nanoparticles (CaP-NPs) as an innovative therapeutic system for the delivery of bioactive molecules to the heart. Materials & methods: CaP-NPs were synthesized via a straightforward one-pot biomineralization-inspired protocol employing citrate as a stabilizing agent and regulator of crystal growth. CaP-NPs were administered to cardiac cells in vitro and effects of treatments were assessed. CaP-NPs were administered in vivo and delivery of microRNAs was evaluated. Results: CaP-NPs efficiently internalized into cardiomyocytes without promoting toxicity or interfering with any functional properties. CaP-NPs successfully encapsulated synthetic microRNAs, which were efficiently delivered into cardiac cells in vitro and in vivo. Conclusion: CaP-NPs are a safe and efficient drug-delivery system for potential therapeutic treatments of polarized cells such as cardiomyocytes

    Alginate Formulations: Current Developments in the Race for Hydrogel-Based Cardiac Regeneration

    Get PDF
    Cardiovascular diseases, including myocardial infarction (MI), represent the main worldwide cause of mortality and morbidity. In this scenario, to contrast the irreversible damages following MI, cardiac regeneration has emerged as a novel and promising solution for in situ cellular regeneration, preserving cell behavior and tissue cytoarchitecture. Among the huge variety of natural, synthetic, and hybrid compounds used for tissue regeneration, alginate emerged as a good candidate for cellular preservation and delivery, becoming one of the first biomaterial tested in pre-clinical research and clinical trials concerning cardiovascular diseases. Although promising results have been obtained, recellularization and revascularization of the infarcted area present still major limitations. Therefore, the demand is rising for alginate functionalization and its combination with molecules, factors, and drugs capable to boost the regenerative potential of the cardiac tissue. The focus of this review is to elucidate the promising properties of alginate and to highlight its benefits in clinical trials in relation to cardiac regeneration. The definition of hydrogels, the alginate characteristics, and recent biomedical applications are herewith described. Afterward, the review examines in depth the ongoing developments to refine the material relevance in cardiac recovery and regeneration after MI and presents current clinical trials based on alginate

    Evaluation of leonardite as a feed additive on lipid metabolism and growth of weaned piglets

    Get PDF
    We evaluated the effects of leonardite supplementation, mainly composed of humic acids (HAs), as a functional feed additive in weaned piglets. One hundred and twenty piglets (Large Withe 7 Landrace) were weaned at 28\ub12 days, and randomly divided into two groups (6 pens per group, 10 piglets per pen). After one week of adaptation, for 40 days groups were fed a control diet (CTRL) and an HA enriched diet (0.25% of leonardite; HAG). Body weight (BW), average daily feed intake (ADFI), average daily gain (ADG), feed conversion ratio (FCR) were measured throughout the experimental period. On the last day of the trial four piglets per pen were randomly selected and the blood was collected to evaluate the serum metabolic profile and diamine oxidase content. Chemical analyses showed that leonardite was characterized by a high content of ash 23.27% (as-fed basis), polyphenolic content of 35.18\ub13.91 mg TAEq/g, and an antioxidant capacity of 73.31\ub18.22 \u3bcmol TroloxEq/g. The HAG group showed an increase in BW, ADG and ADFI (P<0.01) compared to the CTRL group during the experimental period. In terms of the serum metabolic profile, the HAG group showed a significant increase in total protein content (P<0.001), albumin (P<0.001), albumin/globulin ratio (P<0.01), phosphatase alkaline (P<0.01), calcium, phosphorus and magnesium (P<0.05) compared to the CTRL group. A modulation in the serum lipid profile was recorded. The HAG group showed a decrease in total triglycerides (P<0.05) with higher total cholesterol (P<0.05), however only high-density lipoprotein showed a significant increase (P<0.001) compared to the CTRL group. No significant differences in the amount of diamine oxidase were found between groups. In conclusion, leonardite inclusion in the diet at 0.25% was shown to have a positive effect on the serum lipid profile and animal growth. This thus suggests that leonardite can be considered as a new feed additive, which improves the health and performance of weaned piglets

    CaMKII inhibition rectifies arrhythmic phenotype in a patient-specific model of catecholaminergic polymorphic ventricular tachycardia

    Get PDF
    Induced pluripotent stem cells (iPSC) offer a unique opportunity for developmental studies, disease modeling and regenerative medicine approaches in humans. The aim of our study was to create an in vitro 'patient-specific cell-based system' that could facilitate the screening of new therapeutic molecules for the treatment of catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited form of fatal arrhythmia. Here, we report the development of a cardiac model of CPVT through the generation of iPSC from a CPVT patient carrying a heterozygous mutation in the cardiac ryanodine receptor gene (RyR2) and their subsequent differentiation into cardiomyocytes (CMs). Whole-cell patch-clamp and intracellular electrical recordings of spontaneously beating cells revealed the presence of delayed afterdepolarizations (DADs) in CPVT-CMs, both in resting conditions and after β-adrenergic stimulation, resembling the cardiac phenotype of the patients. Furthermore, treatment with KN-93 (2-[N-(2-hydroxyethyl)]-N-(4methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), an antiarrhythmic drug that inhibits Ca(2+)/calmodulin-dependent serine-threonine protein kinase II (CaMKII), drastically reduced the presence of DADs in CVPT-CMs, rescuing the arrhythmic phenotype induced by catecholaminergic stress. In addition, intracellular calcium transient measurements on 3D beating clusters by fast resolution optical mapping showed that CPVT clusters developed multiple calcium transients, whereas in the wild-type clusters, only single initiations were detected. Such instability is aggravated in the presence of isoproterenol and is attenuated by KN-93. As seen in our RyR2 knock-in CPVT mice, the antiarrhythmic effect of KN-93 is confirmed in these human iPSC-derived cardiac cells, supporting the role of this in vitro system for drug screening and optimization of clinical treatment strategies

    Growth hormone-releasing hormone attenuates cardiac hypertrophy and improves heart function in pressure overload-induced heart failure

    Get PDF
    It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409. We show that in vitro, GHRH(1-44)NH2attenuates phenylephrine-induced hypertrophy in H9c2 cardiac cells, adult rat ventricular myocytes, and human induced pluripotent stem cell-derived CMs, decreasing expression of hypertrophic genes and regulating hypertrophic pathways. Underlying mechanisms included blockade of Gq signaling and its downstream components phospholipase Cβ, protein kinase Ce, calcineurin, and phospholamban. The receptor-dependent effects of GHRH also involved activation of Gαsand cAMP/PKA, and inhibition of increase in exchange protein directly activated by cAMP1 (Epac1). In vivo, MR-409 mitigated cardiac hypertrophy in mice subjected to transverse aortic constriction and improved cardiac function. Moreover, CMs isolated from transverse aortic constriction mice treated with MR-409 showed improved contractility and reversal of sarcolemmal structure. Overall, these results identify GHRH as an antihypertrophic regulator, underlying its therapeutic potential for HF, and suggest possible beneficial use of its analogs for treatment of pathological cardiac hypertrophy

    The Protective Effect of Ursodeoxycholic Acid in an in vitro model of the Human Fetal Heart occurs via Targeting Cardiac Fibroblasts

    Get PDF
    Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid (TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus is in a state of relative hypoxia. Although this is essential for the development of the heart and vasculature, resident fibroblasts can transiently differentiate into myofibroblasts and form gap junctions with cardiomyocytes in vitro, resulting in cardiomyocyte depolarization. We expanded on previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal fibroblasts into myofibroblasts.Recent evidence shows that potassium channels are involved in maintaining the membrane potential of ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured fibroblasts. KATP channels are a valuable target as they are thought to have a cardioprotective role during ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane potential.We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the effect of hypoxia, TC and UDCA on human fetal cardiac cells.UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived from human fetal hearts compared to cells isolated from neonatal rat hearts, indicating a possible increased number of myofibroblasts in human fetal hearts. Hypoxia further increased the number of human fetal and rat neonatal myofibroblasts. However, chronically administered UDCA reduced the number of myofibroblasts and prevented hypoxia-induced depolarisation.In conclusion, our results show that the protective effect of UDCA involves both the reduction of fibroblast differentiation into myofibroblasts, and hyperpolarisation of myofibroblasts, most likely through the stimulation of potassium channels, i.e. KATP channels. This could be important in validating UDCA as an antifibrotic and antiarrhythmic drug for treatment of failing hearts and fetal arrhythmia

    Local hyperactivation of L-type Ca2+ channels increases spontaneous Ca2+ release activity and cellular hypertrophy in right ventricular myocytes from heart failure rats

    Get PDF
    Right ventricle (RV) dysfunction is an independent predictor of patient survival in heart failure (HF). However, the mechanisms of RV progression towards failing are not well understood. We studied cellular mechanisms of RV remodelling in a rat model of left ventricle myocardial infarction (MI)-caused HF. RV myocytes from HF rats show significant cellular hypertrophy accompanied with a disruption of transverse-axial tubular network and surface flattening. Functionally these cells exhibit higher contractility with lower Ca2+ transients. The structural changes in HF RV myocytes correlate with more frequent spontaneous Ca2+ release activity than in control RV myocytes. This is accompanied by hyperactivated L-type Ca2+ channels (LTCCs) located specifically in the T-tubules of HF RV myocytes. The increased open probability of tubular LTCCs and Ca2+ sparks activation is linked to protein kinase A-mediated channel phosphorylation that occurs locally in T-tubules. Thus, our approach revealed that alterations in RV myocytes in heart failure are specifically localized in microdomains. Our findings may indicate the development of compensatory, though potentially arrhythmogenic, RV remodelling in the setting of LV failure. These data will foster better understanding of mechanisms of heart failure and it could promote an optimized treatment of patients
    • …
    corecore