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Abstract 

 Bile acids are elevated in the blood of women with intrahepatic cholestasis of pregnancy (ICP) and this 

may lead to fetal arrhythmia, fetal hypoxia and potentially fetal death in utero. The bile acid taurocholic acid 

(TC) causes abnormal calcium dynamics and contraction in neonatal rat cardiomyocytes. Ursodeoxycholic 

acid (UDCA), a drug clinically used to treat ICP, prevents adverse effects of TC. During development, the fetus 

is in a state of relative hypoxia. Although this is essential for the development of the heart and 

cardiovasculature, resident fibroblasts can transiently differentiate into myofibroblasts and can form gap 

junctions with cardiomyocytes in vitro, resulting in cardiomyocytes depolarization. We expanded on 

previously published work using an in vitro hypoxia model to investigate the differentiation of human fetal 

fibroblasts into myofibroblasts. 

 Recent evidence shows that potassium channels are involved in maintaining the membrane potential of 

ventricular fibroblasts and that ATP-dependent potassium (KATP) channel subunits are expressed in cultured 

fibroblasts.  KATP channels are a valuable target as they are thought to have a cardioprotective role during 

ischaemic and hypoxic conditions. We investigated whether UDCA could modulate fibroblast membrane 

potential. 

 We established the isolation and culture of human fetal cardiomyocytes and fibroblasts to investigate the 

effect of hypoxia, TC and UDCA on human fetal cardiac cells. 

 UDCA hyperpolarized myofibroblasts and prevented TC-induced depolarisation, possibly through the 

activation of KATP channels that are expressed in cultured fibroblasts. Also, similar to the rat model, UDCA 

can counteract TC-induced calcium abnormalities in human fetal cultures of cardiomyocytes and 

myofibroblasts. Under normoxic conditions, we found a higher number of myofibroblasts in cultures derived 

from the human fetal heart compared to cells isolated from neonatal rat hearts, indicating a possible 

increased number of myofibroblasts in human fetal hearts.  Hypoxia further increased the number of human 

fetal -and rat neonatal- myofibroblasts. However, chronically administered UDCA reduced the number of 

myofibroblasts and prevented hypoxia-induced depolarisation.  

 In conclusion, our results show that the protective effect of UDCA involves both the reduction of 

fibroblast differentiation into myofibroblasts, and the hyperpolarisation of myofibroblasts, most likely 

through the stimulation of potassium channels, i.e. KATP channels. This could be important in validating UDCA 

as an antifibrotic and antiarrhythmic drug for treatment of failing hearts and fetal arrhythmia. 
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1. Introduction 

Intrahepatic Cholestasis of Pregnancy (ICP) is a liver disease that affects approximately 1% pregnancies in 

the United Kingdom (Geenes and Williamson, 2009; Geenes et al., 2014; Glantz et al., 2004). ICP is 

characterised by maternal pruritus in conjunction with abnormal liver function tests and raised serum bile 

acids. There is also a change in bile acid pool composition, whereby the primary bile acids, taurocholic acid 

(TC) and taurochenodeoxycholic acid (TCDCA) predominate. ICP can be complicated by adverse events for 

the fetus, including spontaneous preterm labour, fetal distress, fetal arrhythmia and intrauterine death. 

These adverse outcomes occur more commonly in pregnancies complicated by higher maternal serum bile 

acid levels (Geenes and Williamson, 2009; Geenes et al., 2014; Glantz et al., 2004). The aetiology of fetal 

death is still poorly understood and is thought to occur suddenly (Geenes et al., 2014; Glantz et al., 2004).  

 Previous research in our lab focused on neonatal rat models of the fetal heart, although some work was 

previously carried out using isolated human fetal cardiomyocytes from aborted fetuses of 9 – 12 weeks of 

gestation with no known pathology (Gorelik et al., 2006a). These cells were used to investigate gene 

expression of bile acid transporters and changes in expression after TC incubation (Gorelik et al., 2006a).  

 The exact mechanisms through which bile acids induce arrhythmias in the human fetal heart remain 

unclear although a number of studies using neonatal rat cardiomyocytes have shown that bile acids can 

affect heart cells. For instance, previous studies demonstrated that the bile acid TC can alter the rate and 

rhythm of cardiomyocyte contraction in both single cells and in a monolayer, as well as causing abnormal 

Ca
2+

 dynamics of single cells (Gorelik et al., 2002; Williamson et al., 2001). The main characteristics of 

arrhythmia induced by TC were a reduction of the contraction rate, decreased amplitude of contraction, 

calcium overload, irregularity of contraction within a beating cell, and desynchronization of a network of 

cardiomyocytes. 

 Cardiomyocytes are not the only cells in the heart; fibroblasts make up a large proportion of cells during 

development and may therefore also be affected by bile acids (Banerjee et al., 2007; Miragoli et al., 2011a). 

Miragoli et al. (2011a) showed that α-Smooth Muscle Actin-positive myofibroblasts transiently appear 

during gestation but are not found in postnatal hearts (Miragoli et al., 2011a). This led to the development of  

the fetal heart model consisting of neonatal rat cardiomyocytes coated with neonatal rat myofibroblasts and 

which was compared to  neonatal rat cardiomyocytes only to simulate the maternal heart (Miragoli et al., 

2011a). Using these models, Miragoli et al. (2011a) showed that TC induces arrhythmias only in the fetal 

heart model of neonatal rat cardiomyocytes and myofibroblasts but not in the cardiomyocytes only model 

(Miragoli et al., 2011a).  

 Ursodeoxycholic acid (UDCA) is a commonly used treatment for ICP, and is currently in clinical trials for 

ICP as well as adult heart disease, although the effects of UDCA on the fetus have not been fully delineated. 
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Geenes et al. (2014) showed that in ICP pregnancies treated with UDCA, elevated concentrations of the drug 

(0.6 – 2.60 μmol/L UDCA) were found in cord blood samples (Geenes et al., 2014).  

 Using the neonatal rat models, Miragoli et al. (2011a) showed that co-incubation of UDCA with TC 

abolishes the arrhythmic effect of TC in the neonatal rat cardiomyocytes and fibroblasts model (Miragoli et 

al., 2011a). Conduction velocity was shown to be increased upon treatment with UDCA in this model, but did 

not change in the cardiomyocytes only model (Miragoli et al., 2011a). However, the toxicity of UDCA in 

neonatal rat cardiomyocytes and fibroblasts has not yet been investigated. 

 During the organogenic period of embryonic development many developing areas undergo partial 

hypoxia, as indicated by the hypoxia marker pimonidazole. These hypoxic areas change depending upon the 

age of the fetus (Webster & Abela, 2007). Pimonidazole also co-localises with cardiac developmental 

markers including vascular endothelial growth factor (VEGF) and hypoxia inducible factor (HIF-1α). It can 

therefore be speculated that the relative state of chronic hypoxia in which the human heart develops is 

necessary for the normal development of the cardiovascular system (Webster & Abela, 2007). Clancy et al. 

(2007) showed that hypoxia is thought to contribute to differentiation of human fetal cardiac fibroblasts into 

myofibroblasts in vitro (Clancy et al., 2007). It has also been postulated that fetal death in ICP may be 

mediated by bile acid induced vasoconstriction of placental vessels leading to acute hypoxia in these fetuses 

(Mays, 2010; Sepúlveda et al., 1991). A study by Miragoli et al. (2011a) showed that myofibroblasts 

transiently appear in human fetal ventricular tissue during the second and third trimesters of gestation. This 

may have an influence on ICP-related fetal heart arrhythmia and sudden fetal death, which is thought to 

occur abruptly at late gestation (Miragoli et al., 2011a). 

 It was previously postulated that UDCA acts through ATP-dependent potassium (KATP) channels (Miragoli 

et al., 2011a). KATP channels are well established pharmacological targets that control cellular energy 

production through alteration of electrical properties of the membrane of the cell. A recent study has 

demonstrated that the membrane potential of isolated fibroblasts can be regulated by K
+
 current (Chilton et 

al., 2005; Shibukawa et al., 2005). 

 Although several different types of K
+
 channels were shown to be expressed in cardiac fibroblasts, we 

focused specifically on KATP channel function (Chilton et al., 2005; Shibukawa et al., 2005; Walsh and Zhang, 

2008). We investigated the ability of selective KATP channel openers pinacidil and P1075 (N-cyano-N′-(1,1-

dimethylpropyl)-N″-3-pyridylguanidine) to modulate resting membrane potential (RMP) in cultured 

fibroblasts.  

 Pinacidil is indicated in the management of hypertension, as it induces vasorelaxation (Lange et al., 2002). 

Pinacidil acts on the sulphonylurea receptor subunits (SUR) of the KATP channel, which enhances the ability of 

SURs to bind and hydrolyse MgATP. This leads to KATP channel opening causing potassium efflux, which in 

turn hyperpolarizes  the cell membrane (Lange et al., 2002). In a study using cardiac fibroblasts from an 
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infarcted heart model, pinacidil treatment increased whole-cell KATP current which was blocked by 

glibenclamide (Benamer et al., 2013). It is thought that activation of fibroblast KATP current would reduce the 

depolarizing effect on cardiomyocytes, which would subsequently prevent early after depolarisations.  

Another agent used in the present study, P1075  is a more potent analogue of pinacidil (Lange et al., 2002).  

 Although KATP channel subunits are abundant in cardiomyocytes, Benamer et al. (2009, 2013) reported 

mRNA and protein expression of SUR2 and Kir6.1 as the two most prominently expressed subunits in mouse 

and rat ventricular fibroblasts (Benamer et al., 2013, 2009). Subsequently, they recorded current carried by 

the Kir6.1/SUR2 channel complex, which was shown to be sensitive to both pinacidil and glibenclamide. They 

demonstrated a connection between KATP channel activation by pinacidil and fibroblast proliferation 

(Benamer et al., 2009). Interestingly, KATP subunits were detected not earlier than day 7 of fibroblast culture, 

and their expression increased progressively alongside αSMA. This suggests that KATP subunit co-expression 

may be dependent on fibroblast differentiation into myofibroblasts, which in turn has potential implications 

in pathophysiological conditions. Currently no evidence exists from human fibroblasts on KATP channel 

localisation and functional contribution to membrane potential. This would be particularly relevant in 

relation to electrical coupling of fibroblasts and cardiomyocytes under adverse conditions such as 

arrhythmia.  

 In this study, human fetal cardiac tissues were collected and using new isolation methods we obtained 

human fetal cardiomyocytes and fibroblasts. Firstly, we characterised the human fetal cardiomyocytes and 

fibroblasts. Secondly, we compared calcium transient characteristics of human fetal cardiomyocytes with 

those of neonatal rat cardiomyocyte-fibroblast co-cultures and investigated the effect of TC and UDCA on 

these cells. Finally, as the fetus develops in a partially hypoxic environment, we investigated the effect of 

hypoxia on human fetal and neonatal rat fibroblasts.  
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2. Materials and Methods 

2.1. Isolation Methods 

 Isolation of cardiomyocytes and fibroblasts from 1-2 day old Sprague-Dawley rats was performed in 

accordance with the guidelines of the UK Home Office Animal (Scientific Procedures) Act of 1986. Neonatal 

rat cardiac cells were isolated using a gentleMACS Dissociator (Mitenyi Biotec) according to their protocol for 

rodent neonatal hearts (www.miltenyibiotec.com/protocols). After dissociation of the neonatal rat cells, 

fibroblasts were separated from cardiomyocytes by preplating the cells in Medium 199 (M199, Sigma) 

containing 10% neonatal calf serum (NCS, Biosera), 1% L-Glutamine (Sigma), 0.5% antibiotics (Sigma) and 1% 

Vitamin B12 (Sigma) for 1 hour at 37°C in 1% CO2 in a flask, as previously described (Miragoli et al., 2011a). 

The supernatant containing the neonatal rat cardiomyocytes was then collected and the cardiomyocytes 

were seeded as a confluent monolayer (250.000 cells per 13 mm coverslip) on the day of isolation in M199 

containing 10% NCS and supplements. New M199 containing 10% NCS and supplements was added to the 

flask. The subsequent day neonatal rat fibroblasts from the previous isolation (after 8 days) labelled with 

Vybrant DiI were seeded on top of the cardiomyocytes in a 1:10 FB:CM ratio in M199 containing 5% NCS. 

Neonatal rat cardiomyocytes were maintained in culture for up to 5 days and fibroblasts were maintained 

for up to 10 days.  

 Human fetal hearts were obtained from surgical terminations of pregnancy at 12 – 17 weeks of gestation, 

which were terminated due to scan or genetic abnormalities, after prior consent of the mother using 

Biobank ethical approval. Fetal human cardiomyocytes and fibroblasts were isolated using solutions from the 

neonatal heart kit (Miltenyi Biotec). Human fetal cardiomyocytes and fibroblasts were separated using the 

preplating technique described above, which was carried out for 2 hours for co-cultures; 3 hours for 

cardiomyocyte only and were subsequently seeded at approximately 100.000 cells per glass bottom dish 

(Mattek). All human fetal cardiac cells were maintained in M199 with 10% NCS and supplements as above. 

Human fetal cardiomyocytes were maintained in culture for up to 10 days, fibroblasts were cultivated for up 

to a month. 

 All cardiomyocytes and fibroblasts were cultured on 13 mm glass coverslips or glass bottom dishes 

(Mattek) coated with laminin (0.5 µg/mL) at 37°C in 1% CO2. 24h treatment of fibroblasts with hypoxia was 

carried out at 37°C, 1% CO2 and 8% O2. Fibroblasts were maintained in M199 with 10% NCS and 

supplements. Cardiomyocytes and fibroblasts were treated with 10 nM - 1 µM UDCA (Sigma), 0.1 – 0.5 mM 

TC (Sigma), 20 µM glibenclamide (Sigma), 10 – 30 µM P1075 (Tocris) or 100 µM pinacidil (Sigma), alone or in 

combination, acutely (for up to an hour) or as pre-treatment (chronic) for 24h in normoxia or hypoxia. The 

range of UDCA and TC was used for experiments investigating the potentially negative effects of these drugs 

on the cells. The choice of 1 µM UDCA was taken from [
3
H]-Glibenclamide experiments with neonatal rat 

fibroblasts, whereby there is displacement of the [
3
H]-Glibenclamide by UDCA (Miragoli et al., 2011a). 
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Although a higher concentration of TC was used compared to the levels found in mother and fetus, this 

concentration was chosen to potentially mimic the longer lasting effects of the bile acids on the fetus, which 

cannot be replicated in a cell culture model. In addition, the concentrations were significantly reduced 

compared to previously published work (Gorelik et al., 2002; Miragoli et al., 2011a; Sheikh Abdul Kadir et al., 

2010; Williamson et al., 2001).  

 

2.2. Electrophysiological Recordings  

 Membrane potential was measured using sharp electrode impalement of single fibroblasts. Impalement 

was carried out on a Nikon Eclipse TE300 using an Axopatch -1D (Axon Instruments) with Clampex 8.0 to 

record resting membrane potential (RMP). Neonatal rat and human fetal fibroblasts were maintained on the 

system with HBSS containing 1% NCS. Cells were impaled by sharp nanopipettes containing 3M KCl and, after 

1 min of membrane potential stabilization 10s recordings were taken. RMP was averaged for each trace. 

Drug treatments were carried out acutely or after 24h treatment, while 24h hypoxia preceded RMP 

recordings. After acute (up to 1h) treatment with TC, UDCA, glibenclamide, P1075 and pinacidil, cells were 

allowed to adapt for 10 minutes before RMP recordings.  

 

2.3. Immunofluorescence 

 All fibroblasts and cardiomyocytes were cultured on coverslips. Fibroblasts were allowed to proliferate 

until optimal density before 24h treatment with normoxia/hypoxia and/or UDCA. Subsequently the 

preparations were washed with PBS and fixed in 4% PFA (Sigma) for 10min. Coverslips were incubated in 

blocking buffer (PBS, 20% serum, 5% BSA, 0.05% Tween-20), after which primary antibodies diluted in 

blocking buffer were applied: α-Smooth Muscle Actin (Abcam for rat, DAKO for human work), α-Actinin, 

Connexin43 (Sigma) and Vimentin (Thermo Scientific). After washes with PBS, coverslips were incubated 

with secondary antibodies, AlexaFluor488 or AlexaFluor546 (Invitrogen) and DAPI (Molekula), before being 

washed and mounted. Calculations of the %αSMA positive cells were carried out using an epifluorescence 

microscope (Nikon) using 40x (oil) magnification. If αSMA structures were visible in the cell, it was deemed 

positive. 

 

2.4. Scanning Ion Conductance Microscopy 

 Scanning Ion Conductance Microscopy (SICM) was used to image cell morphology and topography. SICM 

is a non-contact method of imaging the topography of intact cells (Miragoli et al., 2011b; Nikolaev et al., 

2010). This can be achieved by scanning the surface of the cell using a nanopipette filled with electrolyte and 

an electrode connected to a feedback mechanism that also receives information from a ground electrode 

placed in the bath. Using the ion current as a feedback mechanism the distance between the pipette tip and 
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sample can be maintained, since there is a drop in current when the pipette approaches the cell surface. This 

enables high resolution scans of cell surface areas of varying size to be generated. 

 

2.5. Optical Recording of Calcium Transients and Action Potentials 

 Co-cultures were allowed to mature until beating cardiomyocytes could be seen. For neonatal rat 

cultures this required 3 – 5 days and 3 – 8 days for human fetal cultures. Cells were incubated in 1 mL of 

medium containing either 5 µM Fluo4 acetoxymethyester (Fluo4 AM, Invitrogen) for 20 minutes or 1μM Di-

8-ANEPPS (4-(2-[6-(Dioctylamin)-2-naphthalenyl] ethenyl)-1-(3-sulfopropyl) pyridinium inner salt; Biotium 

Bioscience, Germany),  for 5 minutes at 37°C. HBSS was used for experiments, which was prepared by 

addition of Phenol Red Free Hanks Balanced Salts (Sigma), 0.35 g/L Sodium Bicarbonate (Sigma) and 2.38 g/L 

HEPES (VWR) to 1L dH2O. After incubation the coverslip was washed in HBSS and mounted on an inverted 

microscope (Nikon Eclipse TI) with a camera for optical recording (MICAM Ultima) and perfused at 35°C. 

Different filters were used for imaging with Fluo4 AM, Di-8-ANEPPS and to visualise Vybrant DiI stained 

Fibroblasts. Neonatal rat cultures were paced at a frequency of 1 Hz. Pacing was also applied to human fetal 

cultures, although cells showed a spontaneous loss of activity particularly after TC treatment and did not 

follow pacing consistently. Cells were allowed to adapt for 10 minutes before control videos were taken 

using the imaging software (Scimedia, Japan). Subsequently, treatment with TC and/or UDCA was carried out 

for 10 min before additional recordings were obtained. The duration of the videos taken for treatment with 

0.1 mM TC and TC in combination with UDCA was 4 – 8s with a frame rate of 1 – 2 frames/ms. Recordings 

were averaged based on the whole area recorded, containing cardiomyocytes only or both co-cultured 

cardiomyocytes and fibroblasts. Analysis of the data was carried out using BV_Analyse v11.08 (Brainvision, 

Scimedia) or Matlab.  

 

2.6. Experiments of spontaneous beating activity 

 Spontaneous beating rate was assessed in clusters of beating neonatal rat cardiomyocytes at 35°C, which 

were allowed to adapt to HBSS for 10 min. Activity was measured from 10 different regions, for control, TC 

and TC in combination with UDCA. An inter-drug interval of 10 min allowed for adaptation to the treatments. 

 

2.7. Data analysis 

 Statistical analysis for all data was carried out using Graphpad Prism 5. Data are shown as mean with 

standard error of the mean (SEM), unless otherwise stated. The number of isolations of rat neonatal cells (of 

litters of approximately 12 pups) or tissue samples in case of human tissue is indicated by ‘i’ as described in 

the figure legend and text. The number of recordings (optical recording), cells (impalement) or images is 

designated with ‘n’. For optical recording the n and i are given for the first parameter, subsequent 
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parameters of the same cell type were analysed using the same data sets. All data were tested for normality 

using the Komogorov-Smirnov test and evaluated for Gaussian distribution using parametric tests. 

Otherwise, non-parametric equivalents were used. A p-value of p ≤ 0.05 (*), p ≤ 0.01 (**), or p ≤ 0.001 (***) 

was deemed significant. For the analysis of more than two categories, an One-way Analysis of Variance 

(One-way ANOVA) with post-hoc Bonferroni correction, or non-parametric equivalent, a Kruskall-Wallis 

ANOVA with Dunns correction was used.  
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3. Results 

3.1. Characterisation of human fetal cardiomyocytes 

 For the first time we established cultures of beating cardiomyocytes from human fetal tissues. We 

characterised human fetal cardiomyocytes by immunofluorescence staining using a number of cardiac 

markers including α-Actinin and Connexin43. We found that the cells expressed α-Actinin [Figure 1A - B], 

similar to neonatal rat cardiomyocytes [Figure 1C]. Cell topography was compared to the neonatal 

cardiomyocytes and fibroblasts using SICM [Figure 1 D – E]. To allow the identification of the different cell 

types for SICM experiments, neonatal rat fibroblasts were labelled with a fluorescent marker (Vybrant Dil) 

before seeding [Figure 1E].  There are differences in topography and cell size between human fetal [Figure 

1A, D] and human adult cardiomyocytes (Lyon et al., 2009). Adult cardiomyocytes show clear striated 

patterns of α-Actinin associated with the well organised T-tubular structures (Gorelik et al., 2013; Lyon et al., 

2009; Nikolaev et al., 2010). Although both human fetal and neonatal rat cardiomyocytes show striated 

patterns, their surface topography show no T-tubular invaginations or Z-grooves, as seen in human (or 

rodent) adult cardiomyocytes, indicating that cells are still undergoing structural development (Gorelik et al., 

2013; Lyon et al., 2009; Nikolaev et al., 2010). The human fetal cardiac cells were larger than the neonatal rat 

cardiac cells, although neither showed the invaginations or grooves associated with adult cardiomyocytes 

(Gorelik et al., 2013; Lyon et al., 2009; Nikolaev et al., 2010). Connexin43 expression indicates that human 

fetal cardiomyocytes can form gap junctions in culture [Figure 1A]. A natural infiltration of Vimentin-positive 

fibroblasts occurred in human fetal cultures after 2h preplating [Figure 1B]. Immunostaining for αSMA 

revealed the presence of αSMA-positive neonatal rat myofibroblasts interspersed in the α-Actinin-positive 

neonatal rat cardiomyocytes culture [Figure 1C].  

 

3.2. UDCA does not affect calcium handling properties of neonatal rat cardiomyocytes 

 Analysis of calcium transient duration, as measured by 90% recovery to baseline, can provide information 

on changes in excitation-contraction coupling and calcium handling in the cells. There was no significant 

difference in calcium transient duration (90%) of neonatal rat cardiomyocytes under control conditions 

(333.0 ms ± 8.4; n = 66, i = 6, p > 0.05) and in the presence of increasing concentrations of UDCA: 10 nM 

(389.3 ms ± 22.6; n = 7, i = 2), 100 nM (338.2 ms ± 12.7; n = 28, i = 2) and 1 μM (345.0 ms ± 19.0; n = 10, i = 2) 

[Figure 2A]. This indicated that UDCA did not affect calcium transient parameters in cardiomyocytes at 

concentrations similar to those found to cross the placenta in ICP pregnancies treated with UDCA (Geenes et 

al., 2014). 

 Similarly, no significant difference was found  in calcium transient duration (90%) of neonatal rat 

cardiomyocytes cultured with fibroblasts under control conditions (382.7 ms ± 7.3; n = 77, i = 6, p > 0.05) and 

in the presence of increasing concentrations of UDCA: 10 nM (394.3 ms ± 5.4; n = 71, i = 2), 100 nM (337.4 
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ms ± 11.0; n = 35, i = 2), 1 μM (407.6 ms ± 4.0; n = 38, i = 2) and 100 µM UDCA (444.1 ms ± 3.1; n = 6, i = 2) 

[Figure 2B].  

 In addition, time to peak was affected neither in the cardiomyocytes only cultures after treatment with 

10 nM (80.1 ms ± 7.0), 100 nM (89.9 ms ± 7.5) or 1 µM UDCA (78.0 ms ± 6.6) compared to control (79.4 ms ± 

2.9; p > 0.05) [Figure 2C] nor in the co-cultures after treatment with 10 nM (47.5 ms ± 1.2), 100 nM (48.7 ms 

± 2.0) or 1 µM UDCA (48.0 ms ± 1.8) compared to control (48.2 ms ± 2.1; p > 0.05) [Figure 2D].  

 Finally, no significant difference was measured in the total calcium amplitude (ΔF/F0) in the co-cultures 

after treatment with 10 nM (57.2 a.u. ± 1.7), 100 nM (43.4 a.u. ± 1.6) or 1 µM UDCA (53.9 a.u. ± 1.9) 

compared to control (53.2 a.u. ± 2.6; p > 0.05) [Figure 2E]. 

 

3.3. Taurocholic acid induces changes in calcium transient duration which are attenuated by UDCA 

 Miragoli et al. (2011) previously showed that UDCA attenuated TC-induced conduction velocity slowing 

and prevented TC-induced re-entries in the co-culture model of neonatal rat cardiomyocytes and fibroblasts 

(Miragoli et al., 2011a). To expand upon this work, the effects of TC alone and in combination with UDCA 

were investigated in this model using optical recording of calcium transients.  

 Unlike UDCA, the addition of 0.1 mM TC (608.8 ms ± 23.3; n = 8, i = 4, p ≤ 0.001) significantly prolonged 

calcium transient duration  in neonatal rat cardiomyocytes cultured with fibroblasts in comparison to control 

(382.0 ms ± 72.2; n = 18, i = 4), whilst treatment with 0.1 mM TC in combination with 1 μM UDCA resulted in 

a similar calcium transient duration to that of control (326.3 ms ± 95.3; n = 8, i = 2) [Figure 3A]. A significant 

reduction in transient duration was seen after combined treatment with TC and UDCA (326.3 ms ± 95.3; p ≤ 

0.05) compared to TC alone (608.8 ms ± 23.3). 

 There was a significant increase in time to peak after TC treatment (69.73 ms ± 4.1; p ≤ 0.001) compared 

to control (50.08 ms ± 1.6). This was attenuated by UDCA in the combined treatment (54.38 ms ± 4.0; p ≤ 

0.05) [Figure 3B]. 

 In human fetal cardiomyocyte cultures an increased presence of fibroblasts was observed due to 

increased culture time. Therefore no additional fibroblasts were added as in the neonatal rat model [Figure 

3C, D left]. To reduce the amount of fibroblast infiltration additional experiments were carried out after 3 

hours of preplating for 1 isolation [Figure 3C, D right]. 

 There was a significant increase in calcium transient duration after incubation with 0.1 mM TC (180.7 ms 

± 26.0; n = 15, i = 2, p ≤ 0.05) compared to control (144.4 ms ± 15.2; n = 51, i = 3) [Figure 3C]. Addition of 1 

μM UDCA and 0.1 mM TC showed that UDCA attenuated the increase in calcium transient duration induced 

by TC (119.4 ms ± 11.1; n = 55, i = 2, p ≤ 0.001) [Figure 3C]. Additionally, after 3 hours of preplating 

preliminary data indicates that no changes calcium transient duration occurred after incubation with 0.1 mM 
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TC (149.4 ms ± 6.3; n = 4, i = 2 dishes, 1 isolation) compared to control (193.6 ms ± 9.8; n = 5, i = 2 dishes, 1 

isolation). 

 Incubation with TC also led to a significant increase in time to transient peak (65.2 ms ± 3.4; p ≤ 0.001) 

compared to control (37.7 ms ± 4.3) [Figure 3D]. This increase was prevented when UDCA was applied 

together with TC (38.0 ms ± 4.5). Additionally, after 3 hours of preplating preliminary data indicates that no 

changes in time to peak occurred after incubation with TC (53.3 ms ± 2.1) compared to control (58.6 ms ± 

4.0). 

 

3.4. Action potential duration and beating rate are altered by TC 

 Changes in calcium transient duration may be due to changes in action potential duration and 

repolarisation time. We investigated the effect of TC on action potential duration (APD) in the co-culture 

model of neonatal rat cardiomyocytes and fibroblasts [Figure 4A]. Addition of 0.2 mM TC (271.0 ms ± 41.0; n 

= 20, i = 3, p ≤ 0.001) led to a significant increase in action potential duration at 90% repolarization 

(APD90%) in comparison to control (242.1 ms ± 26.5; n = 21, i = 3). When 1 μM UDCA (226.5 ms ± 29.0; n = 

12, i = 3, p ≤ 0.001) was subsequently added to 0.2 mM TC, a significant reduction in APD90% was observed 

in comparison to TC alone.  

 Changes in calcium dynamics and action potential characteristics led to changes in contraction rate and 

rhythmicity of the cells. The spontaneous beating rate of neonatal rat cardiomyocytes in co-culture with 

fibroblasts showed changes with TC alone and TC combined with UDCA treatment [Figure 4B]. The baseline 

control was set as 100% (n = 86, i = 4),  deviation from the baseline was calculated for 0.1 mM TC and for 0.1 

mM TC together with 1 μM UDCA [Figure 4B]. Incubation with 0.1 mM TC led to a significant reduction in 

beating rate compared to baseline (71.3% ± 3.0; n = 80, i = 4, p ≤ 0.001). Co-incubation of 0.1 mM TC and 1 

μM UDCA led to a partial, but significant improvement in beating rate when compared to TC (87.6% ± 2.6; n 

= 27, i = 4, p ≤ 0.001). 

 

3.5. Bile acids modulate resting membrane potential in fibroblasts but not in cardiomyocytes 

 The effect of bile acids on fibroblast resting membrane potential (RMP) was investigated to evaluate 

whether changes in calcium transients of cardiomyocytes were due to changes in resting membrane 

potential of fibroblasts [Figure 5A (rat) and 5C (human)] and/or cardiomyocytes [Figure 5B]. 0.2 mM TC and 

0.2 mM TC combined with 100 nM UDCA did not affect the RMP of neonatal rat cardiomyocytes (0.2 mM TC; 

-66.0 mV ± 6.6; n = 3; i = 2, 0.2 mM TC and 100 nM UDCA; -82.2 mV ± 1.0; n = 4, i = 2, 100 nM UDCA; -78.2 

mV ± 2.1; n = 12, i = 2) compared to control (-66.2 mV ± 3.9; n = 20, i = 2) [Figure 5B]. However, the RMP of 

both neonatal rat fibroblasts (control; -18.1 mV ± 2.5; n = 30, i = 3) [Figure 5A] and human fetal fibroblasts (-

21.7 mV ± 1.0; n = 78, i = 4) [Figure 5C] became more negative following the application of 1 µM UDCA (-34.8 
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mV ± 3.9; n = 28, i = 3, p ≤ 0.01; -41.0 mV ± 2.1; n = 85, i = 4, p ≤ 0.001, respectively), after 0.2 mM TC 

treatment the RMP became more positive in both neonatal rat and human fetal fibroblasts (-6.6 mV ± 0.7; n 

= 35, i = 3, p ≤ 0.001; -17.9 mV ± 0.5; n = 47, i = 3, p ≤ 0.05, respectively). The RMP of both neonatal rat and 

human fetal fibroblasts were significantly more negative after TC and UDCA treatment compared to TC alone 

(-25.0 mV ± 2.9; n = 7, i = 2, p ≤ 0.001; -26.3 mV ± 0.9; n = 31, i = 3, p ≤ 0.01 respectively). In addition, the 

RMP of human fetal fibroblasts was further hyperpolarized by UDCA in the combined treatment in 

comparison to control (p ≤ 0.01). Both 100 µM pinacidil (-43.0 mV ± 4.4; n = 8, i = 2, p ≤ 0.001) and P1075 (-

49.2 mV ± 1.6; n = 7, i = 2 p ≤ 0.001) induced a significant hyperpolarisation of the neonatal rat fibroblasts. In 

human fetal fibroblasts pinacidil was more potent (-51.5 mV ± 3.3; n = 37, i = 3) when compared to P1075 (-

32.1 mV ± 2.0; n = 36, i = 3, p ≤ 0.05), both of which induced significant hyperpolarisation compared to 

untreated fibroblasts (P1075: p ≤ 0.01; pinacidil: p ≤ 0.001).  

 Blockade of KATP channels by 20 µM glibenclamide did not induce significant changes in RMP of human 

fetal fibroblasts (-36.3 mV ± 3.1; n = 14, i = 1) compared to matched controls (-43.9 mV ± 3.2; n = 14, i = 1) 

[Figure 5D]. Furthermore, addition of 20 µM glibenclamide prevented UDCA-induced hyperpolarisation in 

human fetal fibroblasts (-48.2 mV ± 4.7; n = 21, i = 1). The RMP of human fetal fibroblasts from this isolation 

was on average more negative than from previous isolations, potentially due to differences in genetic 

background or gestation. Additional recordings with 1 µM UDCA showed that UCDCA induced further 

hyperpolarisation also in these fibroblasts (-66.8 mV ± 4.7; n = 23 cells, i = 1, p ≤ 0.01).  

 These results suggest that both neonatal rat and human fetal fibroblasts express functional KATP channels. 

Expression of the KATP channel subunits Kir6.1, Kir6.2, SUR1 and SUR2 was investigated in neonatal rat 

cardiomyocytes and fibroblasts (n = 5) and was normalised to the housekeeping gene GAPDH 

[Supplementary Figure 1]. Kir6.1 was found in both neonatal rat cardiomyocytes and fibroblasts. Kir6.2 mRNA 

expression levels were very low in both neonatal rat cardiomyocytes and fibroblasts. SUR1 and SUR2 were 

both expressed in neonatal rat cardiomyocytes and fibroblasts.   

 

3.6. Chronic treatment UDCA hyperpolarises fibroblasts without affecting cardiomyocytes 

 The cardiac models currently in use to investigate ICP consist of cultured cells that are acutely treated 

with bile acids. However, in ICP the fetus can be exposed to high levels of bile acids for many weeks, 

depending on the gestational week at the onset of the disease. This may lead to accumulation of bile acids in 

the fetus, or to a chronic exposure of the fetal heart to different bile acids during development. To elucidate 

the chronic effect of UDCA on neonatal rat cardiomyocytes and fibroblasts, these cells were incubated with 

UDCA for 24h before RMP measurements. Chronic treatment with 100 nM (-72.5 mV ± 1.9; n = 5, i = 2), 1 µM 

(-74.8 mV ± 4.6; n = 4, i = 2) and 10 µM (-74.4 mV ± 1.2; n = 6, i = 2) UDCA had no significant effect on 

neonatal rat cardiomyocytes when compared to control (-75.8 mV ± 1.7; n = 36; i = 2) [Figure 6A]. In 
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contrast, chronic treatment of neonatal rat fibroblasts with 100 nM (-47.3 mV ± 1.5; n = 8, i = 2), 1 µM (-45.5 

mV ± 3.7; n = 4, i = 2), 10 µM (-41.6 mV ± 4.3; n = 4, i = 2) and 100 µM (-41.6 mV ± 2.9; n = 4, i = 2) UDCA led 

to significant hyperpolarisation of the fibroblasts compared to untreated controls (-23.5 mV ± 1.8; n = 40, i = 

2, p ≤ 0.001)  [Figure 6B]. Chronic treatment with 100 nM UDCA also induced significant hyperpolarisation in 

co-cultures of neonatal rat cardiomyocytes and fibroblasts (-64.7 mV ± 3.0; n = 9, i = 3, p ≤ 0.01) compared to 

control as measured from cardiomyocytes with linked fibroblasts (-50.6 mV ± 1.5; n = 28, i = 3) 

[Supplementary Figure 2]; whilst chronic treatment with 0.1 mM – 0.5 mM TC (0.1 mM: -41.5 mV ± 0.4; n = 

12, 0.3 mM: -31.3 mV ± 2.0; n = 9 and 0.5 mM: -32.6 mV ± 1.0, n = 19; i = 3, p ≤ 0.01) induced significant 

depolarisation in the co-cultures compared to control.  

 

3.7. The effect of hypoxia on fibroblasts is attenuated by UDCA 

 A fetus develops in a state of partial hypoxia during pregnancy (Clancy et al., 2007; Patterson and Zhang, 

2010; Webster and Abela, 2007). Therefore, further investigation into the effect of hypoxia on neonatal rat 

and human fetal fibroblasts was carried out. The ratio of myofibroblast to fibroblast was first characterised 

by comparing the number of αSMA-positive myofibroblasts in the total population of cells. Vimentin staining 

was used to confirm that αSMA-negative cells were fibroblasts. 

 In neonatal rat fibroblasts, hypoxia treatment (24h) led to a significantly increased number of αSMA-

positive cells (82.8% ± 4.3; n = 34, i = 3) compared to normoxia (45.0% ± 3.3; n = 69, i = 3, p ≤ 0.001) [Figure 

7A]. This was significantly reduced by UDCA treatment during hypoxia compared to hypoxia alone (43.0% ± 

8.2; n = 14, i = 3, p ≤ 0.001). 24h treatment with 1 µM UDCA did not induce significant changes in the 

number of αSMA-positive cells in normoxia (38.7% ± 3.7; n = 57, i = 3). Representative images of the effect of 

the various treatments on neonatal rat fibroblasts are shown in Supplementary Figure 3A. 

 In human fetal fibroblasts, a large percentage of cells were αSMA-positive in normoxia (78.8% ± 4.2; n = 

34, i = 3) [Figure 7C]. After hypoxia treatment (24h) there was an increased number of αSMA-positive cells, 

but this was not significant (95.9% ± 3.1; n = 17, i = 3). 24h treatment with 1 μM UDCA led to a significant 

reduction in αSMA-positive cells in both normoxia (59.7% ± 4.6; n = 39, i = 3 p ≤ 0.05) and hypoxia (73.4% ± 

4.8; n = 45, i = 3, p ≤ 0.05). Representative images of the effect of the various treatments on human fetal 

fibroblasts are shown in Supplementary Figure 3B. 

 Fibroblasts were relatively depolarised compared to the surrounding cardiomyocyte population, whilst 

UDCA induced hyperpolarisation of fibroblasts after acute treatment. Therefore we investigated whether 

hypoxia also induced RMP changes in neonatal rat fibroblasts [Figure 8A] and human fetal fibroblasts [Figure 

8B]. 24h treatment with hypoxia did not lead to significant changes in the RMP of neonatal rat fibroblasts (-

16.3 mV ± 2.3; n = 6, i = 2) compared to normoxia (-18.1 mV ± 1.7; n = 30, i = 3) [Figure 8A]. Acute 1 μM 

UDCA treatment induced significant hyperpolarisation in normoxia (-34.8 mV ± 3.9; n = 28, i = 3, p ≤ 0.01) 
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and in hypoxia (-28.1 mV ± 4.6; n = 6, i = 2, p ≤ 0.05) compared to cells treated with normoxia or hypoxia 

alone.  

 In human fetal fibroblasts, 24h treatment with hypoxia led to a significant decrease in RMP (-8.3 mV ± 

1.2; n = 12, i = 3, p ≤ 0.05) compared to normoxia (-22.5 mV ± 2.9; n = 25, i = 3) [Figure 8B]. On the other 

hand, acute treatment with 1 μM UDCA induced hyperpolarisation in cells pre-treated with normoxia (-41.0 

mV ± 2.1; n = 60, i = 3, p ≤ 0.001) or hypoxia (-22.7 mV ± 2.3; n = 17, i = 3, p ≤ 0.05). 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

4. Discussion 

4.1. Characterisation of the human fetal heart 

 For the first time, this study shows successful isolation of beating human fetal cardiomyocytes. The 

human fetal cardiomyocytes were characterised using immunofluorescence microscopy to visualise the 

expression and localisation of various proteins known to be involved in the development and maturation of 

cardiomyocytes. The human fetal cardiomyocytes were compared to neonatal rat cardiomyocytes, which 

show similar localisation of α-Actinin. 

 Connexin43 and α-Actinin are essential proteins for the correct functioning of the contraction machinery 

of adult cardiomyocytes, as well as for signalling between cardiomyocytes. The expression pattern of rat 

neonatal cardiomyocytes and human fetal cardiomyocytes was very similar, as the cells showed an 

immature phenotype when compared to the adult ‘organised’ phenotype. 

 Scanning ion conductance microscopy analysis showed that there were similarities in the morphology and 

topography of the neonatal rat and human fetal cells. Neither neonatal rat nor human fetal cardiomyocytes 

show the well-structured crests or T-tubule structures within Z-grooves, which are a distinctive feature of 

adult cardiomyocytes (Gorelik et al., 2006b; Miragoli et al., 2011b; Nikolaev et al., 2010). The development 

of these structures occurs later on in gestation and continues after birth until cardiomyocytes reach full 

maturity. The development and maturation of T-tubules has been described in animal models (Al-Qusairi 

and Laporte, 2011; Chen et al., 2013; Seki, 2003). The development of the heart of a human neonate 

presumably occurs via similar processes though with a longer duration due to developmental differences in 

humans and rodents. In rodents, T-tubules develop during the first two weeks after birth, with rudimentary 

structures appearing by postnatal day 8. These structures show increased maturity, complexity and 

magnitude by postnatal day 14 (Seki, 2003; Ziman et al., 2010). There were striated patterns of α-Actinin 

visible in the human fetal and neonatal rat cardiomyocytes, but possibly due to their shape, these patterns 

were not organised in the same manner as in adult cardiomyocytes, where they are perpendicular to the 

longitudinal axis of the cardiomyocytes (Maier et al., 2004). Instead the α-Actinin staining appeared 

disordered following no discernible alignment. As these immature cells are not rod-shaped, unlike adult 

cardiomyocytes, the perpendicular line may not follow the shape of the cell and subsequent lines of α-

Actinin may not be arranged next to the lines closest to the membrane.  

 Connexin43 forms gap junctions between adult cardiomyocytes along the intercalated discs, which 

facilitate the inter-cellular exchange of molecules (Maier et al., 2004). In neonatal rat and human fetal 

cardiomyocytes cell morphology is not yet rod-shaped and therefore no clear intercalated discs can be 

identified. It is clear however, that Connexin43 is expressed in junctional areas between cells. 
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4.2. The effect of UDCA on the heart 

 As UDCA is currently in use for clinical treatment of both ICP and other cardiac diseases (Geenes and 

Williamson, 2009; Geenes et al., 2014, 2013; Rainer et al., 2013; Von Haehling et al., 2012), the short term 

and long term effects of UDCA on neonatal cardiomyocytes and fibroblasts were investigated. Optical 

recording of calcium transients was carried out with control (HBSS) solution, followed by UDCA treatment 

(10 nM, 100 nM, 1 μM or 100 μM).  No significant changes in calcium transient duration, time to peak or 

amplitude were seen at any of the concentrations tested in either the cardiomyocyte only or co-culture 

models of neonatal rat cardiomyocytes co-cultured with fibroblasts. Similarly, neither acute nor chronic 

incubation with UDCA affected the resting membrane potential of neonatal rat cardiomyocytes at any of the 

concentrations used. UDCA induced significant hyperpolarisation in neonatal rat fibroblasts, similar to the 

acute effect shown in this study as well as previously (Miragoli et al., 2011a). Both studies suggest that UDCA 

is safe to use at the doses examined in neonatal rat cardiomyocytes and fibroblasts. This is of interest for 

clinical application as these doses are within the range of UDCA found to cross the placenta in ICP 

pregnancies treated with UDCA (Geenes et al., 2014). The total bile acid levels found to cross the placenta 

ranged from 2 – 10 μmol/L in ICP pregnancies, with UDCA treatment reducing this total level significantly. In 

addition, UDCA was well-tolerated in patients with chronic heart failure (Sinisalo et al., 1999; Tousoulis et al., 

2012; Von Haehling et al., 2012). 

 

4.3. Counteracting the effect of Taurocholic acid 

 The deleterious effect of high doses of TC on beating rate, amplitude, calcium transients and action 

potential conduction velocity has previously been shown in neonatal rat cardiomyocytes and in the co-

culture model of neonatal rat cardiomyocytes and fibroblasts (Gorelik et al., 2004, 2002; Kadir et al., 2010; 

Miragoli et al., 2011a; Williamson et al., 2001). Miragoli et al. (2011a) subsequently showed that UDCA can 

protect against the arrhythmic properties of TC, if incubated simultaneously with TC in the neonatal rat co-

culture model (Miragoli et al., 2011a). Incubation with 0.5 mM TC alone led to conduction velocity slowing 

and formation of re-entry circuits in the co-culture model, which did not occur after co-incubation of 0.5 mM 

TC and 100 nM UDCA (Miragoli et al., 2011a). Conduction velocity was increased upon treatment with 100 

nM UDCA together with 0.5 mM TC in the co-culture model, but did not change in the cardiomyocytes only 

model (Miragoli et al., 2011a). Here it was shown that even at lower doses there is an increase in action 

potential duration when the neonatal rat cardiomyocytes and fibroblasts were incubated with TC, providing 

evidence that TC has a similar effect to those previously shown, even at lower concentrations (Miragoli et al., 

2011a). 

 We compared the effect of a lower dose of TC on human fetal- and neonatal rat cardiomyocytes and 

fibroblasts. Increases in calcium transient duration, time to full calcium release and time for calcium 
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reuptake in cardiomyocytes can have arrhythmogenic effects, as increased levels of Ca
2+

 in the cytoplasm 

can lead to a pro-arrhythmogenic state of the cell (Scoote & Williams, 2004). TC was shown to induce 

increased calcium transient duration and increased time to full release, which was attenuated by UDCA, 

indicating that UDCA may prevent TC induced arrhythmias in neonatal rat cardiomyocytes cultured with 

fibroblasts. Optical recording of human fetal cardiomyocytes and fibroblasts was also carried out. These 

monolayers were grown in culture for a number of days, which allowed for the proliferation of residual 

fibroblasts. Human fetal cardiomyocytes with naturally occurring fibroblasts were also treated with the same 

concentration of TC (0.1 mM), but possibly due to an increased sensitivity of the cells the cells stopped 

beating and no fluorescence could be detected after a shorter period of incubation than in the neonatal rat 

cardiomyocytes. UDCA prevented this reduction in fluorescence from occurring when incubated with TC, a 

potential protective effect. Further experiments should be carried out with a lower concentration of TC, to 

prevent early loss of cells due to the toxicity of TC. This difference between rodent and human cells may be 

due to species differences in sensitivity to bile acids. The use of lower doses of TC could further strengthen 

our hypothesis that arrhythmias in the fetus in vivo occur due to the toxicity of TC, even at low 

concentrations.  

 Both increases (tachycardia) and decreases in heart rate (bradycardia) can have fatal consequences for 

the fetus. A few studies have reported abnormal fetal heart rates (≤ 100 or ≥ 180 beats per minute (bpm)) as 

well as reduced heart rate variability in ICP (Gorelik et al., 2003; Inizi et al., 2006; Laatikainen, 1975; Reid et 

al., 1976; Shand et al., 2008). Therefore, spontaneous beating rate was assessed in neonatal rat 

cardiomyocytes cultured with fibroblasts. There was a significant reduction in bpm by almost 30% after TC 

treatment. Addition of UDCA led to a partial recovery to 80-90% of control. There was a significant 

improvement, although complete recovery was not obtained. This may be due to a slight natural slowing in 

beating rate over time. 

 The fibroblast-driven arrhythmic effect is largely related to direct depolarization of cardiomyocytes via 

gap junctional coupling, but a significant portion of this depolarization is induced by paracrine effects and by 

a tensile strain exerted by the myofibroblasts seeded on top of the cardiomyocytes (Thompson et al., 2011), 

and by the activation of cardiac fibroblast mechanosensitive channels (Grand et al., 2014).  In spite of this 

multifactorial pro-arrhythmogenic aetiology, we observed that UDCA targeting KATP channels had minimal 

effects on cardiomyocytes only (these cells are already at their physiological RMP and the possible cellular 

input resistance remains unchanged after the administration of UDCA) but have a significant effect on 

myofibroblasts acting via the same KATP channels. The myofibroblast hyperpolarisation is therefore 

transferred to the coupled cardiomyocyte, reducing the overall RMP depolarization.  

 Whether arrhythmogenesis occurs in vivo,) depends on the degree of coupling, whether heterocellular 

coupling occurs, and the density and the size of fibrotic areas, which are all prerequisites for eliciting ectopic 
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activity in vitro and in vivo (Miragoli and Glukhov, 2015), regardless of the source-sink relationship on 

intracellular space (safety factor > 1).We did not observe any effect of TC on cardiomyocyte RMP, but the 

effect is clearly present in cardiac fibroblasts of both human and rat origin [Figure 4]. As we previously 

demonstrated TC alters calcium handling of cardiomyocytes via partial agonism of the muscarinic M2 

receptors, this pro-arrhythmic pathway is activated by TC and does not affect cardiomyocyte RMP, therefore 

we may expect a synergistic effect with altered cardiac fibroblast RMP exerted by TC, when both cells are 

coupled (Kadir et al., 2010; Miragoli et al., 2011a). However, in this study, we did not investigate any 

downstream mechanisms for calcium release and uptake. We plan to focus on the role of Ryanodine 

receptors (mainly calcium sparks density and amplitude) and also on the role of SERCA2 in these cells, using  

new fluorophore technology (Wang et al., 2014). 

  One of the limitations of the present and previous studies is the relatively high concentration of TC used 

compared to what was recently shown to cross the placenta or accumulate in the fetus close to the time of 

delivery (Geenes et al., 2014). The total CA levels ranged from 0.5 – 5 μmol/L, of which TC ranged from 0.5 – 

1.5 μmol/L (Geenes et al., 2014). As there may be a cumulative effect of the bile acid exposure over a long 

period of time found in the fetus, which has not been replicated in the neonatal rat models, this higher dose 

was chosen as it is similar to total bile acid levels that can be found in the mother. Hence it may still provide 

valuable information with regards to the effects of TC on cardiomyocytes and fibroblasts. If further samples 

become available, we will expand this work with lower doses of TC, to ensure the cells do not experience 

such a toxic load. 

 

4.4. UDCA alters membrane potential and modulates fibroblast structure  

 The number of myofibroblasts in neonatal rat and human fetal fibroblast populations were compared. An 

increased number of αSMA-positive human fetal fibroblasts were found even under control conditions, 

which may suggest that effects of a hypoxic environment in utero still persisted under short-term culture 

conditions (less than 1 month). Upon treatment with hypoxia, this number further increased and in addition, 

hypoxia induced significant depolarisation in these human fetal fibroblasts. This suggests that the natural 

‘contamination’ seen in the human fetal cardiomyocyte culture is similar to the gestational appearance of 

myofibroblasts during the development of the human fetal heart, and that it is comparable to the neonatal 

rat co-cultures described here and previously (Miragoli et al., 2011a). Interestingly, UDCA treatment led to a 

reduction in the number of myofibroblasts. This is similar to the effect of UDCA on liver fibrosis (Fickert et 

al., 2006; Halilbasic et al., 2009). 

 Since the fetus develops in partial hypoxia, the effect of hypoxia and 1 μM UDCA on RMP was 

investigated (Chilton et al., 2005; Webster and Abela, 2007). Hypoxia induced a relative depolarisation in 
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both neonatal rat and human fetal fibroblasts, although this was only found to be significant in human fetal 

fibroblasts.   

      One study examined the ionic basis of membrane potential and associated changes in physiological 

function of both rat fibroblasts and myofibroblasts (Chilton et al., 2005). Hyperpolarisation of fibroblasts is 

associated with cell proliferation and/or survival, while depolarisation had no effect (Chilton et al., 2005). On 

the other hand, depolarisation would be expected to result in fibroblast contraction, which can be measured 

by collagen deformation assays. In the present study we report that hypoxia-induced depolarisation of 

human fetal fibroblasts positively correlates with αSMA expression, which is linked to conversion of 

fibroblasts to myofibroblasts. It is already established that mechanical forces to which fibroblasts are 

exposed can influence their physiological function, by putatively changing their membrane potential. 

Equally, hypoxic/ischaemic environments can cause down-regulation of ion channels involved in maintaining 

RMP (Benamer et al., 2013, 2009). In our study we saw a significant positive shift of membrane potential in 

human fetal fibroblasts [Figure 8B], which is indicative of channel subunit reduction. This is plausible given 

that hypoxia treatment was applied overnight.  

     Acute treatment with 1 μM UDCA led to significant hyperpolarisation of the hypoxia-treated neonatal rat 

and human fetal fibroblasts. Similar results were obtained under normoxic conditions with 1 μM UDCA. To 

further evaluate potential molecular targets responsible for the UDCA-mediated negative shift 

(hyperpolarisation) in membrane potential observed in human fetal fibroblasts, selective KATP channel agents 

were employed (Lange et al., 2002). Addition of KATP channel agonists induces efflux of K
+
 from the cells, 

lowering the membrane potential to more negative values  (Chilton et al., 2005; Lange et al., 2002; 

Shibukawa et al., 2005). It was shown previously that treatment with the KATP channel blocker glibenclamide 

prevented UDCA induced hyperpolarisation of RMP in neonatal rat fibroblasts (Miragoli et al., 2011a). The 

present study shows that glibenclamide does not induce significant changes in the RMP of human fetal 

fibroblasts, and as in neonatal rat fibroblasts, prevents UDCA induced hyperpolarisation [Figure 5D]. As the 

effect of UDCA on RMP is similar to that of two KATP channel agonists, pinacidil and its analogue P1075, and is 

blocked by glibenclamide, KATP channels are likely to be the main target of UDCA. In addition, changes in RMP 

seen with UDCA were obtained following short-term incubation, suggesting that an effect on channel 

function, rather than on expression is associated with these changes. It would be interesting to further 

examine whether UDCA has an effect on whole-cell KATP current. 

     Although contribution of other K
+
 channels subtypes in UDCA-mediated alteration of fibroblast potential 

across the cell have to be taken into account, only K
+
 channels are able to mediate RMP. For instance, 

inwardly rectifying K
+
 (Kir) channels are thought to be the principal K

+
 channel subtype responsible for 

maintaining RMP (Baczkó et al., 2003). Chilton et al. (2005) reported K
+
 conductance in adult rat cardiac 

myofibroblasts to be carried by several K
+
 channel subtypes, namely Kir and delayed rectifier voltage-gated K

+
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(Kv) (Chilton et al., 2005; Shibukawa et al., 2005). They recorded two types of currents carried by Kir channels, 

one active near the RMP (inward), and a second, time- and voltage-dependent current at potentials positive 

to -40 mV (outward) (Chilton et al., 2005; Shibukawa et al., 2005). mRNA transcripts corresponding to Kir2.1 

and Kir6.1 subtypes were detected, the latter encodes a pore-forming KATP subunit, which most likely carries 

time- and voltage-dependent outward K
+
 current (Chilton et al., 2005). Although further investigation is 

necessary, these data suggest that membrane potential in human fetal fibroblasts is partially mediated by 

KATP channels, which belong to the Kir channel family and which can be modulated by UDCA, a molecule with 

fibroblasts-specific, anti-arrhythmic properties (Miragoli et al., 2011a). Apart from their role in  maintaining 

the membrane potential, these channels could be responsible for modulating the threshold for cellular 

excitability (crucial in cardiomyocyte-fibroblasts coupling), and could contribute to K
+
 homeostasis in cardiac 

tissue (Ruppersberg, 2000). 

 

4.5. Conclusions 

 In conclusion, we show that human fetal cardiomyocytes have similar characteristics to neonatal rat 

cardiomyocytes, both in localisation of cardiac markers, cellular topography and calcium transient 

parameters. The effect of TC was investigated in both the neonatal rat model of cardiomyocytes and 

fibroblasts and the human fetal model using human fetal cardiomyocytes with interspersed naturally 

occurring fibroblasts. The prolongation of calcium transient duration induced by TC in both models was 

attenuated by UDCA. In the neonatal model UDCA also prevented potentially arrhythmic changes in action 

potential duration and beating rate. To further investigate the effect of bile acids on fibroblasts, RMP 

recordings were carried out. TC depolarised both neonatal rat and human fetal fibroblasts, but had no effect 

on neonatal rat cardiomyocyte membrane potential. UDCA hyperpolarised fibroblasts, and prevented TC-

induced depolarization. Furthermore, UDCA induced hyperpolarisation of both neonatal rat and human fetal 

fibroblasts when cultured in hypoxia for 24h hours. UDCA treatment also led to a reduced number of human 

fetal myofibroblasts in both normoxia and hypoxia. Our study thereby provides further evidence of the 

protective effect of UDCA on the human fetal heart. This could be important in validating UDCA as an 

antifibrotic and antiarrhythmic drug for treatment of fetal arrhythmia in ICP, as well as treatment of adult 

heart failure. 
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Figure 1: Characterisation of the human fetal cardiac cells 

Human fetal cardiomyocytes and fibroblasts were isolated and characterised using 

immunofluorescence microscopy and SICM. A) α-Actinin (red) and Connexin43 (green) staining of 

the human fetal cardiomyocytes show gap junctional formation between the α-Actinin positive 

cardiomyocytes. Scale bar: 20 µM. B) α-Actinin (green) and Vimentin (red) stained cardiomyocyte 

cultures show infiltration of Vimentin positive fibroblasts. Scale bar: 20 µM. C) Co-cultures of 

neonatal rat cardiac cells similar to the human fetal culture was achieved by culturing 

cardiomyocytes; α-Actinin (red) and α-Smooth Muscle Actin (green) positive myofibroblasts 

together. D) SICM topography scans show variability in the size and shape of the human fetal 

cardiomyocytes and fibroblasts. E) Neonatal rat cardiomyocytes and fibroblasts (labelled with 

Vybrant DiI) when cultured together form a dense monolayer of cells. Cardiomyocytes and 

fibroblasts are distinguishable by the DiI labelling.  

 

Figure 2: UDCA does not affect calcium transients of neonatal rat cardiomyocytes 

The effect of UDCA on the calcium transient dynamics of neonatal rat cardiomyocytes cultured alone 

or in combination with fibroblasts was investigated. A) There was no significant change in calcium 

transient duration, as measured by 90% duration, when neonatal cardiomyocytes were acutely 

treated with increasing doses of UDCA; 10 nM (n = 7 recordings, i = 2 isolations), 100 nM (n = 28, i = 

2) and 1 μM (n = 10, i = 2) compared to control (n = 66, i = 6, p > 0.05). B) Similarly, there was no 

significant difference in the calcium transient duration of neonatal rat cardiomyocytes when 

cultured together with fibroblasts after treatment with UDCA; 10 nM (n = 71, i = 2), 100 nM (n = 35, i 

= 2), 1 μM (n = 38, i = 2) and 100 µM UDCA (n = 6, i = 2) compared to control (n = 77, i = 6). C) No 

significant change was found in the time to peak when treating neonatal cardiomyocytes with 

increasing doses of UDCA (10 nM, 100 nM or 1 µM) compared to control. D) No significant change 

was found in the time to peak when treating neonatal cardiomyocytes co-cultured with fibroblasts 

with increasing doses of UDCA (10 nM, 100 nM or 1 µM) compared to control. E) Treatment with 

increasing doses of UDCA (10 nM, 100 nM or 1 µM) did not lead to significant changes in Ca
2+

 

amplitude in the neonatal rat cardiomyocyte and fibroblast co-culture. 

 

Figure 3: TC induces calcium transient duration prolongation which is reversed by UDCA.  

A) Optical recording of neonatal rat cardiomyocytes and fibroblasts shows that 0.1 mM TC (n = 8 

recordings, i = 4 isolations, p ≤ 0.001) leads to calcium transient duration prolongation compared to 

control (n = 18, i = 4), whilst this was prevented when the cells were treated with TC in combination 

with 1 µM UDCA, and was significantly reduced compared to TC (n = 8, i = 2, p ≤ 0.05). B) Time until 
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full release is also prolonged after 0.1 mM TC incubation (p ≤ 0.001, compared to control) and this is 

prevented by 1 µM UDCA (p ≤ 0.05, compared to TC). Similarly in a culture of human fetal 

cardiomyocytes, which showed a higher level fibroblast infiltration, TC induces increases in calcium 

transient duration and time to peak (n = 15, i = 2, p ≤ 0.05 and p ≤ 0.001 respectively) compared to 

control (n = 51, i = 3), this effect of 0.1 mM TC is reversed by 1 µM UDCA (n = 55, i = 2, p ≤ 0.001) (C, 

D left). In human fetal cultures with little fibroblast infiltration, 0.1 mM TC (n = 4, i = 2 dishes, 1 

isolation) did not induce a significant increase in either calcium transient duration or in time to peak 

(n = 5, i = 2 dishes, 1 isolation) (C, D right). 

 

Figure 4: Action potential characteristics and beating rate are altered by TC. This can be prevented 

by UDCA 

A) Action potential duration (APD90) increases may lead to increased propensity to form 

arrhythmias. 0.2 mM TC was previously shown to induce re-entries in the neonatal rat 

cardiomyocytes with fibroblasts on top, therefore action potential characteristics of neonatal rat 

cardiomyocytes co-cultured with fibroblasts were further investigated. 0.2 mM TC (n = 20 

recordings, i = 3 isolations) induced a significant increase in action potential duration compared to 

control (n = 21, i = 3, p ≤ 0.001), whilst this was reversed by 1 µM UDCA (n = 12, i = 3, p ≤ 0.001). B) 

Contraction of the cardiomyocytes is usually rhythmic and regular, but treatment with 0.1 mM TC (n 

= 80, i = 4, p ≤ 0.001) induced a reduction in beating rate of the cardiomyocytes in the co-culture 

compared to control (n = 86, i = 4). Co-incubation of 0.1 mM TC and 1 μM UDCA led to a partial, but 

significant improvement in beating rate when compared to TC (n = 27, i = 4, p ≤ 0.001). 

 

Figure 5: Acute effects of bile acids and KATP channel agonists on resting membrane potential in 

cardiomyocytes and fibroblasts. 

A) Acutely applied 1 µM UDCA (n = 28 cells, i = 3 isolations, p ≤ 0.01) resulted in a significant 

hyperpolarising shift in resting membrane potential of neonatal rat fibroblasts whilst acutely applied 

0.2 mM TC (n = 35, i = 2, p ≤ 0.001) resulted in a significant depolarising shift in neonatal rat 

fibroblasts compared to control (n = 30, i = 3). B) Mean resting membrane potentials in neonatal rat 

cardiomyocytes, on the other hand remained unchanged following treatment with 0.2 mM TC (n = 3; 

i = 2), 100 nM UDCA (n = 12, i = 2)  or 0.2 mM TC and 100 nM UDCA (n = 4, i = 2) compared to control 

(n = 20, i = 2).  C) In human fetal fibroblasts 1 µM UDCA treatment (n = 85, i = 4, p ≤ 0.001) also led to 

a significantly hyperpolarising shift compared to control (n = 78, i = 4), similarly to the neonatal rat 

fibroblasts. In addition, 0.2 mM TC (n = 47, i = 3, p ≤ 0.05) had a significant depolarising effect on the 

human fetal fibroblasts. A, C) Depolarising effects of 0.2 mM TC were reversed by the presence of 1 
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µM UDCA in fibroblasts from both species (n = 7, i = 2, p ≤ 0.001; n = 31, i = 3, p ≤ 0.01 respectively). 

In addition, the RMP of human fetal fibroblasts was further hyperpolarized by UDCA in the combined 

treatment in comparison to control (p ≤ 0.01).Acute incubation with KATP channel openers 30 µM 

P1075 and 100 µM pinacidil resulted in significant hyperpolarising shift of the resting membrane 

potential in both neonatal rat (n = 7, i = 2, p ≤ 0.001; n = 8, i = 2, p ≤ 0.001 respectively) and human 

fetal fibroblasts (n = 36, i = 3, p ≤ 0.01; n = 37, i = 3, p ≤ 0.001), although in the human fetal 

fibroblasts pinacidil was more potent compared to P1075 (p ≤ 0.05). D) Acute application of 20 µM 

glibenclamide (n = 14, i = 1) did not induce significant changes in resting membrane potential of 

human fetal fibroblasts compared to matched controls (n = 14, i = 1). Subsequent incubation of 20 

µM glibenclamide with 1 µM UDCA (n = 21, i = 1) prevents UDCA induced hyperpolarisation of 

human fetal fibroblasts, similar to neonatal rat fibroblasts (Miragoli et al., 2011). The RMP of human 

fetal fibroblasts from this isolation was on average more negative than from previous isolations, 

potentially due to differences in genetic background or gestation. Additional recordings with 1 µM 

UDCA showed that UCDCA induced further hyperpolarisation also in these fibroblasts (n = 23 cells, i 

= 1, p ≤ 0.01).  

 

Figure 6: Chronic incubation with UDCA modulates membrane potential of neonatal rat 

fibroblasts, without affecting membrane potential of cardiomyocytes.  

A) Chronic incubation with UDCA ranging from 100 nM to 10 µM (100 nM: n = 5 cells, i = 2 isolations; 

1 µM:  n = 4, i = 2; 10 µM: n = 6, i = 2) did not change resting membrane potential in neonatal rat 

cardiomyocytes compared to control (n = 36; i = 2), but induced hyperpolarisation in neonatal rat 

fibroblasts (100 nM: n = 8, i = 2; 1 µM: n = 4, i = 2; 10 µM: n = 4, i = 2; 100 µM: n = 4, i = 2) compared 

to control n = 40, i = 2, p ≤ 0.001) (B). 

 

Figure 7: Effects of chronic hypoxia and UDCA incubation on αSMA expression in neonatal rat and 

human fetal fibroblasts 

A) Overnight hypoxia (n = 34, i = 3) induces an increase in the number of myofibroblasts, as seen by 

an increase in αSMA positive cells in neonatal rat fibroblasts compared to normoxia (n = 69, i = 3, p ≤ 

0.001). The effect of hypoxia was attenuated by 1 µM UDCA treatment during the hypoxia (n = 14, i = 

3, p ≤ 0.001). 1 µM UDCA treatment does not induce changes in the number of αSMA positive cells 

under normoxic conditions (n = 57, i = 3). B) There is a larger percentage of myofibroblasts in the 

human fetal fibroblast population even in normoxia (n = 34, i = 3). After hypoxia treatment (24h) 

there was an increased number of αSMA-positive cells, but this was not significant (n = 17, i = 3). 
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This number is reduced with overnight UDCA treatment in both normoxia (n = 39, i = 3 p ≤ 0.05) and 

hypoxia (73.4% ± 4.8; n = 45, i = 3, p ≤ 0.05).  

 

Figure 8: Resting membrane potential changes after chronic hypoxia in neonatal rat and human 

fetal fibroblasts  

A) Neonatal rat fibroblasts were treated for 24h with hypoxia/normoxia and acutely with/without 

UDCA. Acute treatment with UDCA induced hyperpolarisation in neonatal rat fibroblasts after either 

normoxia (n = 28, i = 3, p ≤ 0.01) or hypoxia (n = 6, i = 2, p ≤ 0.05) compared to normoxia (n = 30, i = 

3) or hypoxia alone (n = 6, i = 2). B) Human fetal fibroblasts were treated for 24h with 

hypoxia/normoxia and acutely with/without UDCA. In human fetal fibroblasts, hypoxia induced 

significant depolarisation (n = 12, i = 3, p ≤ 0.05) compared to normoxia (n = 25, i = 3). This was 

attenuated by UDCA, inducing hyperpolarisation of the fibroblasts to normoxia levels (n = 17, i = 3, p 

≤ 0.05 compared to hypoxia, ns compared to normoxia). In normoxia, UDCA (n = 60, i = 3, p ≤ 0.001) 

induced significant hyperpolarisation similar to results found in the neonatal rat fibroblasts (A) and 

(Miragoli et al., 2011). 

 

Supplementary Figure 1: mRNA expression of the KATP channel subunits in neonatal rat 

cardiomyocytes and fibroblasts 

Expression of the KATP channel subunits Kir6.1, Kir6.2, SUR1 and SUR2 was investigated in neonatal rat 

cardiomyocytes and fibroblasts and was normalised over the housekeeping gene GAPDH. A) Kir6.1 is 

expressed in both neonatal rat cardiomyocytes and fibroblasts (n = 5). B) Kir6.2 mRNA expression 

levels were very low in both neonatal rat cardiomyocytes and fibroblasts (n = 5). C) SUR1 is 

expressed in both neonatal rat cardiomyocytes and fibroblasts (n = 5). D) SUR2 is expressed in both 

cardiomyocytes and fibroblasts (n = 5).  

 

Supplementary Figure 2: Chronic treatment with TC leads to significant depolarisation in neonatal 

rat cardiomyocytes and fibroblasts 

Chronic treatment with TC (0.1 mM: n = 12 cells, 0.3 mM: n = 9 cells and 0.5 mM: n = 19 cells; i = 3 

isolations, p ≤ 0.01) leads to a significant depolarising shift in neonatal rat cardiomyocytes and 

fibroblast co-cultures compared to control (n = 28, i = 3). 100 nM UDCA on the other hand leads to a 

significant hyperpolarising shift in these cells (n = 9, i = 3, p ≤ 0.01) and (Miragoli et al., 2011). 

 

Supplementary Figure 3: Representative images of αSMA positive fibroblasts after treatment in 

normoxia and hypoxia with and without UDCA 
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A) Representative confocal scans of αSMA immunostaning from neonatal rat fibroblasts in normoxic 

and hypoxic conditions in the absence and presence of UDCA. Scale: 50 µM. B) Representative 

confocal scans of human fetal fibroblasts in normoxic and hypoxic conditions in the absence and 

presence of UDCA. Scale: 50 µM. 
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