4 research outputs found

    Sulphate concentration in cave dripwater and speleothems:long-term trends and overview of its significance as proxy for environmental processes and climate changes

    Get PDF
    Sulphate concentrations in speleothems identify major volcanic eruptions, provide useful information on soil and aquifer dynamics and, in similar fashion to the 14C bomb peak, its Anthropocene peak can be used to date recent cave formations. However, the transmission of S from the atmosphere to cave dripwater and its incorporation in speleothems is subjected to biogeochemical cycling and accurate studies of each cave site are needed in order to assess how the S atmospheric signal is modified and eventually encoded in speleothems. This study investigates the role of biogeochemical cycling and aquifer hydrology by utilising published and new dripwater and speleothem data from Grotta di Ernesto (ER) in northern Italy. Here we provide the first long-term record of sulphate concentration in cave dripwater based on over 20 years of measurements. Fast drip site st-ER1 is characterised by a continuous decrease in SO4 concentration from a high of 7.5 ± 0.8 mg/l in 1993–1994 to a low of 2.2 ± 0.2 mg/l in 2013–2014, and replicates with a delay of ∼15 years the decline in the atmospheric SO2 emissions. The S-series of slow flow ER78 site is further delayed by ∼4.5 years in relation to the S retention in the aquifer matrix. The dripwater data are used to extend the previously published S record (1810–1998 AD) of stalagmite ER78 and reconstruct the anthropogenic S-peak: this displays a delay of ∼20 years with respect to the atmospheric S emission peak due to biogeochemical cycling and aquifer storage. However, sulphur recycling above the cave did not operate with the same degree of efficiency through time, which resulted in a variable time delay between S deposition and incorporation into the stalagmite. In the pre-Anthropocene era, and in particular during the cold Little Ice Age, biogeochemical cycling was far less efficient than today, and the fast transmission of the atmospheric signal allowed capture of S released during major volcanic eruptions by stalagmites

    Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves

    No full text
    Diverse interpretations have been made of carbon isotope time series in speleothems, reflecting multiple potential controls. Here we study the dynamics of 13C and 12C cycling in a particularly well-constrained site to improve our understanding of processes affecting speleothem δ13C values. The small, tubular Grotta di Ernesto cave (NE Italy) hosts annually-laminated speleothem archives of climatic and environmental changes. Temperature, air pressure, pCO2, dissolved inorganic carbon (DIC) and their C isotopic compositions were monitored for up to five years in soil water and gas, cave dripwater and cave air. Mass-balance models were constructed for CO2 concentrations and tested against the carbon isotope data. Air advection forces winter pCO2 to drop in the cave air to ca. 500 ppm from a summer peak of ca. 1500 ppm, with a rate of air exchange between cave and free atmosphere of approximately 0.4 days. The process of cave ventilation forces degassing of CO2 from the dripwater, prior to any calcite precipitation onto the stalagmites. This phase of degassing causes kinetic isotope fractionation, i.e. 13C-enrichment of dripwater whose δ13CDIC values are already higher (by about 1‰) than those of soil water due to dissolution of the carbonate rock. A subsequent systematic shift to even higher δ13C values, from −11.5‰ in the cave drips to about −8‰ calculated for the solution film on top of stalagmites, is related to degassing on the stalagmite top and equilibration with the cave air. Mass-balance modelling of C fluxes reveals that a very small percentage of isotopically depleted cave air CO2 evolves from the first phase of dripwater degassing, and shifts the winter cave air composition toward slightly more depleted values than those calculated for equilibrium. The systematic 13C-enrichment from the soil to the stalagmites at Grotta di Ernesto is independent of drip rate, and forced by the difference in pCO2 between cave water and cave air. This implies that speleothem δ13C values may not be simply interpreted eithe

    Biogeochemical cycling of sulphur in karst and transfer into speleothem archives at Grotta di Ernesto, Italy

    No full text
    Trace amounts of sulphur in speleothems suggest that stalagmites may act as archives of sulphur deposition, thereby recording aspects of atmospheric variability in sulphur content. Accurate interpretation of this novel sulphur archive depends upon understanding how biogeochemical cycling in the soil and epikarst above the cave may modify the precursor atmospheric values of sulphur concentration and isotopic composition prior to incorporation into the speleothem record. Dual isotope analysis of δ34S-SO4 and δ18O-SO4 is used to trace biogeochemical transformations of atmospheric sulphur through the cave system at Grotta di Ernesto in the Italian Alps and builds towards a framework for interpretation of speleothem sulphur archives which depends on overlying ecosystem dynamics and karst hydrological properties. A three component model of atmospheric signal modification is proposed to be driven by 1. vegetation and soil cycling, 2. the degree of groundwater mixing in the karst aquifer; and 3. redox status. The relative influence of each process is specific to individual drip flow sites and associated stalagmites, rendering each suphur archive a unique signal of environmental conditions. Under conditions found in the soil and epikarst above Grotta di Ernesto, the dual isotope signatures of sulphate sulphur and oxygen incorporated into speleothem carbonate, closely reflect past conditions of industrial sulphur loading to the atmosphere and the extent of signal modification through biogeochemical cycling and aquifer mixing
    corecore