867 research outputs found

    Thermal Kinetic Inductance Detectors for Millimeter-Wave Astrophysics

    Get PDF
    Thermal Kinetic Inductance Detectors (TKIDs) combine the excellent noise performance of traditional bolometers with a radio frequency (RF) multiplexing architecture that enables the large detector counts needed for the next generation of millimeter-wave instruments. Here we present dark prototype TKID pixels that demonstrate a noise equivalent power NEP = 2×10⁻¹⁷√W/Hz with a 1/f knee at 0.1 Hz, suitable for background-limited noise performance at 150 GHz from a ground-based site. We discuss the optimizations in the device design and fabrication techniques to realize optimal electrical performance and high quality factors at a bath temperature of 250 mK

    Transcriptional regulation of ascorbic acid during fruit ripening in pepper (Capsicum annuum) varieties with low and high antioxidants content

    Get PDF
    Research on plant antioxidants, such as ascorbic acid (AsA) and polyphenols, is of increasing interest in plant science because of the health benefits and preventive role in chronic diseases of these natural compounds. Pepper (Capiscum annuum L.) is a major dietary source of antioxidants, especially AsA. Although considerable advance has been made, our understanding of AsA biosynthesis and its regulation in higher plants is not yet exhaustive. For instance, while it is accepted that AsA content in cells is regulated at different levels (e.g., transcriptional and post-transcriptional), their relative prominence is not fully understood. In this work, we identified and studied two pepper varieties with low and high levels of AsA to shed light on the transcriptional mechanisms that can account for the observed phenotypes. We quantified AsA and polyphenols in leaves and during fruit maturation, and concurrently, we analyzed the transcription of 14 genes involved in AsA biosynthesis, degradation, and recycling. The differential transcriptional analysis indicated that the higher expression of genes involved in AsA accumulation is a likely explanation for the observed differences in fruits. This was also supported by the identification of gene-metabolite relations, which deserve further investigation. Our results provide new insights into AsA differential accumulation in pepper varieties and highlight the phenotypic diversity in local germplasm, a knowledge that may ultimately contribute to the increased level of health-related phytochemicals

    Influence of Eta-Phase on Wear Behavior of WC-Co Carbides

    Get PDF
    Cemented carbides, also known as Widia, are hard metals produced by sintering process and widely used in mechanical machining. They show high cutting capacity and good wear resistance; consequently, they result to be excellent materials for manufacturing cutting tools and sandblast nozzles. In this work, the wear resistance of WC-Co carbides containing Eta-phase, a secondary phase present in the hard metals when a carbon content deficiency occurs, is analyzed. Different mixtures of carbide are prepared and sintered, with different weight percentages of carbon, in order to form Eta-phase and then analyze how the carbon content influences the wear resistance of the material. This characterization is carried out by abrasive wear tests. The test parameters are chosen considering the working conditions of sandblast nozzles. Additional information is gathered through microscopic observations and the evaluation of hardness and microhardness of the different mixtures. The analyses highlight that there is a limit of carbon content below which bad sintering occurs. Considering the mixtures without these sintering problems, they show a wear resistance depending on the size and distribution of the Eta-phase; moreover, the one with high carbon content deficiency shows the best performance

    Localization Capability of Cooperative Anti-Intruder Radar Systems

    Get PDF
    System aspects of an anti-intruder multistatic radar based on impulse radio ultrawideband (UWB) technology are addressed. The investigated system is composed of one transmitting node and at least three receiving nodes, positioned in the surveillance area with the aim of detecting and locating a human intruder (target) that moves inside the area. Such systems, referred to also as UWB radar sensor networks, must satisfy severe power constraints worldwide imposed by, for example, the Federal Communications Commission (FCC) and by the European Commission (EC) power spectral density masks. A single transmitter-receiver pair (bistatic radar) is considered at first. Given the available transmitted power and the capability of the receiving node to resolve the UWB pulses in the time domain, the surveillance area regions where the target is detectable, and those where it is not, are obtained. Moreover, the range estimation error for the transmitter-receiver pair is discussed. By employing this analysis, a multistatic system is then considered, composed of one transmitter and three or four cooperating receivers. For this multistatic system, the impact of the nodes location on area coverage, necessary transmitted power and localization uncertainty is studied, assuming a circular surveillance area. It is highlighted how area coverage and transmitted power, on one side, and localization uncertainty, on the other side, require opposite criteria of nodes placement. Consequently, the need for a system compromising between these factors is shown. Finally, a simple and effective criterion for placing the transmitter and the receivers is drawn

    D(-)lentiginosine-induced apoptosis involves the intrinsic pathway and is p53-independent

    Get PDF
    We have recently found that D(-)lentiginosine, a synthetic iminosugar exerting glucosidase inhibitory activity, but not its natural enantiomer lentiginosine, is endowed with an unexpected, pro-apoptotic activity. Here, we investigated mechanisms involved in apoptosis induced by D(-)lentiginosine in MOLT-3, HT-29 and SH-SY5Y tumour cell lines. The results showed that D(-)lentiginosine increased caspase 9 expression at 18 h in all the cell lines from 1.5-3.1 folds. Cytochrome c in the cytoplasm was found to be increased from 2.3-2.6 folds in treated cells with respect to control cells. These effects were accompanied by a remarkable collapse of the mitochondrial membrane potential and by the downregulation of anti-apoptotic genes, as well as the upregulation of pro-apoptotic genes of the Bcl-2 family. U937Bcl-2 transfectants, highly expressing Bcl-2, were reluctant to undergo apoptosis even following treatment with 500 μM D(-)lentiginosine, whereas apoptosis by D(-)lentiginosine was induced also in U937 cells, naturally deficient in P53. Thus, our study establishes that the enantiomer of a natural iminosugar is endowed with a possible anti-tumorigenic effect that might be ascribed not only to their capacity to inhibit glycosidases but also to other unknown mechanisms. These data encourage further investigation on similar compounds to make them an interesting platform for the generation of new anticancer drugs

    Laser Marking of Titanium Coating for Aerospace Applications

    Get PDF
    Abstract In the aerospace industry, in order to ensure the identification and the traceability of the products, high repeatability, non-invasive and durable marking processes are required. Laser marking is one of the most advanced marking technologies. Compared to traditional marking processes, like punches, microdot, scribing or electric discharge pencil etcher, laser marking offers several advantages, such us: non-contact working, high repeatability, high scanning speed, mark width comparable to the laser spot dimension, high flexibility and high automation of the process itself. In order to assure the mark visibility for the component lifetime, an appropriate depth of the mark is required. In this way, a stable behaviour is ensured also when the component operates in aggressive environments (i.e. in presence of oxidation, corrosion and wear phenomena). The mark depth is strongly affected by the laser source kind and by the process parameters, such us average power, pulse frequency and scanning speed. Moreover, an excessive mark penetration could cause stress concentrations and reduce the fatigue life of the component. Consequently, an appropriate selection of the process parameters is required in order to assure visibility and to avoid excessive damage. Cold Spray Deposition (CSD) is a relative new technology that allows to produce surface coatings without significant substrate temperature increasing. In aeronautics fields this technology is useful to coat materials sensible to temperature, such as solution tempered aluminum alloy, with a titanium layer. Aim of the work is to characterize the laser marking process on CSD Ti coating, in order to study the influence of the laser marking process parameters (pulse power and scanning speed), on the groove geometry of the marking. The experimental marking tests were carried out through a 30 W MOPA Q-Switched Yb:YAG fibre laser; under different process conditions. The groove geometry was measured through a HIROX HK9700 optical microscope. The results showed the effectiveness of the laser process to produce high quality marks on the titanium layer. Moreover, a correlation between the process parameters and the mark's geometry was clearly observed
    corecore