30 research outputs found
Slipping interfaces: A possible source of S radiation from explosive sources
We consider the problem of reflection and refraction of purely compressional waves incident on an interface separating identical solid half-spaces in which the condition of continuity of shear displacement at the boundary is generalized to one that allows slippage. The problem is solved using the Cagniard-de Hoop technique. It is found that the generation of reflected P and S waves, as well as transmitted S waves, is most effective in the case of perfectly unbounded half-spaces. We discuss the implications of this model for the generation of S waves by block movement in the vicinity of an underground explosion
Multi-mode analysis of Rayleigh-type Lg. Part 1. Theory and applicability of the method
Rayleigh-type Lg propagating in a laterally homogeneous continental crust can be synthesized by adding only a few overtones at periods greater than 2 sec. Under minimal assumptions, we show that wavenumber analysis of Lg recorded on a several hundred kilometers long linear array of 10 stations allow us to isolate the different overtones, providing a tool to study crustal structures and excitation of the overtones at the source. In this first paper, we use synthetic Lg seismograms to investigate the applicability of a time-frequency-wavenumber analysis technique (UC diagram algorithm) to realistic arrays of stations. The behavior of the algorithm in the presence of lateral heterogeneities is studied numerically by introducing either random or coherent phase perturbations. We find that (1) the method is tractable if random phase fluctuations from station to station are spread over less than half a cycle, and (2) coherent velocity changes between two halves of a profile are spatially averaged if they are too small to be resolved by the array
The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble
For most solids the ‘high temperature background’ attenuation dominates at low frequencies and temperatures greater than about one-half the melting temperature. It is likely to be important in the mantle at seismic frequencies. The same mechanism also contributes to transient creep at low stresses and low total strains. A relaxation spectrum is found which satisfies the frequency dependence of laboratory Q and the time dependence of transient creep data. This makes it possible to provide a physical interpretation of the parameters in Jeffrey's modified Lomnitz creep function.
Q is predicted to increase as ω^α in the lower Q regions of the mantle. At high and low frequencies Q should increase as ω and ω^(−1), respectively. The location of the ω^α band depends on temperature and therefore shifts with depth. At high temperatures, seismic waves are on the low-frequency side of the absorption band and Q decreases with frequency. Far from the melting point and at sufficiently high frequencies Q should increase linearly with frequency. We use Chandler wobble, tidal and free oscillation data to estimate that α is ∼ 1/5 to 1/3, consistent with laboratory measurements of transient creep and internal friction at high temperature. A preliminary attempt is made to estimate the transient creep response of the mantle from Q measurements. The inferred viscosity agrees well with direct measurements.
The effect of anelasticity is to lengthen the calculated period of the Chandler wobble by 5-20 days, depending on the Chandler wobble Q. A Q of 300 for the wobble, which is within the experimental uncertainty of recent determinations, gives the observed period after correcting for the effect of the oceans
Dislocations and nonelastic processes in the mantle
Dislocations in solids contribute to anelastic attenuation, relaxation of the shear modulus, transient creep, and steady state flow. These properties of the mantle may therefore be related. The glide and climb of dislocations appear to have the appropriate time constants to explain seismic wave attenuation and mantle viscosity, respectively. The dislocation density of the mantle depends on the ambient stress. The characteristic time scales of dislocation relaxation depend on dislocation length and temperature. These time scales for the mantle can be inferred from seismic wave attenuation and postglacial rebound, thereby potentially yielding information about dislocation density, stress, and temperature. The thickness of the ‘rheological’ lithosphere depends on stress and duration of load as well as age. Kilobar level stresses can be supported in the lithosphere for times greater than 106 years. The relaxation time decreases rapidly with temperature. The asthenosphere can therefore only support small stresses on time scales of geological interest
A numerical boundary integral equation method for elastodynamics. I
The boundary initial value problems of elastodynamics are formulated as boundary integral equations. It is shown that these integral equations may be solved by time-stepping numerical methods for the unknown boundary values. A specific numerical scheme is presented for antiplane strain problems and a numerical example is given
Multi-mode analysis of Rayleigh-type Lg. Part 2. Application to southern California and the northwestern Sierra Nevada
The UC diagram technique described in the companion paper (Part 1), is applied to nine sets of Lg phases recorded through the CEDAR system in southern California, and two sets of Lg phases recorded along the northwestern margin of the Sierra Nevada. A clear image of the signal is obtained in time-frequency-wavenumber space, and we discuss in particular observations at 2.5-sec period, for events 200 to 300 km outside the profiles. From the gross features of UC diagrams we conclude that a representation of Lg as a single coherent multi-mode wave train is oversimplified in the case of southern California but is more appropriate for the Sierra block. In southern California, peaks observed at group velocities smaller than 3.2 km/sec are not predicted by realistic crustal models of the area, and are probably due to lateral heterogeneities effects such as mode conversion and multipathing. On the other hand, for group velocities between 3.2 and 3.6 km/sec, peaks observed in either area can generally be interpreted in terms of overtones excited at the source and propagating through spatially averaged structures, although care must be taken to monitor the stability of the algorithm on actual short-period records
Report of the panel on plate motion and deformation, section 2
Given here is a panel report on the goals and objectives, requirements and recommendations for the investigation of plate motion and deformation. The goals are to refine our knowledge of plate motions, study regional and local deformation, and contribute to the solution of important societal problems. The requirements include basic space-positioning measurements, the use of global and regional data sets obtained with space-based techniques, topographic and geoid data to help characterize the internal processes that shape the planet, gravity data to study the density structure at depth and help determine the driving mechanisms for plate tectonics, and satellite images to map lithology, structure and morphology. The most important recommendation of the panel is for the implementation of a world-wide space-geodetic fiducial network to provide a systematic and uniform measure of global strain
The Algorithm Theoretical Basis Document for the Derivation of Range and Range Distributions from Laser Pulse Waveform Analysis for Surface Elevations, Roughness, Slope, and Vegetation Heights
The primary purpose of the GLAS instrument is to detect ice elevation changes over time which are used to derive changes in ice volume. Other objectives include measuring sea ice freeboard, ocean and land surface elevation, surface roughness, and canopy heights over land. This Algorithm Theoretical Basis Document (ATBD) describes the theory and implementation behind the algorithms used to produce the level 1B products for waveform parameters and global elevation and the level 2 products that are specific to ice sheet, sea ice, land, and ocean elevations respectively. These output products, are defined in detail along with the associated quality, and the constraints, and assumptions used to derive them
Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study
Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation