7 research outputs found

    Preventive Effects of Health-Food Drinks on the Obesity and DNA Damage of Mice Fed a High-Fat Diet under a Mild Stress

    Get PDF
    The body weight gain of mice fed an obesity-inducing diet is suppressed by a mild restraint stress, but at the same time, as previously reported, the stress induces DNA damage in the cells of multiple organs. In the present study, we attempted to prevent not only the obesity but also the DNA damage of mice fed an obesity-inducing diet under a mild restraint with commercially available health-food drinks such as fruit and vegetable juices, soymilks, vinegars and lactic acid bacteria drinks, which are rich in antioxidants. The body weight gain of young female mice fed a high-fat diet containing 20% fat for 4 weeks was considerably inhibited by restraint for 15 min per day in weeks 2 to 4 of 4-week period. The inhibition was further promoted with the concomitant administration of health-food drinks noted above, and was accompanied by a decrease of periovular fat, a major abdominal fat in the female mice. The definite loss of energy intake in the mice given health-food drinks was approximately compensated by the energy of the drink administered. On the other hand, the increase of DNA damage generated by restraint in the cells of five organs – the liver, pancreas, spleen, heart and bone marrow – was markedly suppressed with the administration of these drinks. The results suggest that a combination of mild stress and intake of suitable health-food containing some antioxidants may inhibit lifestyle-related diseases including hyperlipidemia and obesity, which may contribute to the inhibition of metabolic syndrome and childhood obesity

    Preventive effects of metallothionein against DNA and lipid metabolic damages in dyslipidemic mice under repeated mild stress

    Get PDF
    The effects of repeated mild stress on DNA and lipid metabolic damages in multiple organs of dyslipidemic mice, and the preventive role of metallothionein (MT) were investigated. Female adult wild-type and MT-null mice fed high-fat diet (HFD) or standard diet (STD) were repeatedly subjected to fasting or restraint for three weeks. The liver, pancreas, spleen, bone marrow and serum samples were taken for evaluating DNA damage, MT, glutathione (GSH), corticosterone, carnitine and adiponectin. Body weights of restraint groups were reduced with the intensity of stress increased, even if the energy intakes were higher than those of STD group. Hepatic GSH levels were reduced in HFD control group and were further reduced in stress groups, especially in restraint groups, while the hepatic MT and serum corticosterone levels were increased in concert with the intensity of stress. Cellular DNA damages were generally increased by the restraint stress, especially in MT-null mice. Hepatic carnitine levels of MT-null mice were markedly lower than those of wild-type mice. The data suggest that MT plays a preventive role by acting as an antioxidant in corporation with GSH decreased by repeated stress and that MT may be an essential factor for inducing carnitine under the stress

    A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Get PDF
    The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems
    corecore