509 research outputs found
Racial stereotyping: survey of psychiatrists in the United Kingdom
No abstracts available
Reactive attachment disorder in the general population: a hidden ESSENCE disorder
Reactive attachment disorder (RAD) is a severe disorder of social functioning. Previous research has shown that children with RAD may have poor cognitive and language abilities; however, findings mainly come from biased, institutionalised samples. This paper describes the characteristics of all children who were given a suspected or likely diagnosis of reactive attachment disorder in an epidemiological study of approximately 1,600 children investigating the prevalence of RAD in the general population. We found that children with RAD are more likely to have multiple comorbidities with other disorders, lower IQs than population norms, more disorganised attachment, more problem behaviours, and poorer social skills than would be found in the general population and therefore have a complex presentation than can be described as ESSENCE. We discuss the clinical and educational implications
Satellite Estimates of Surface Short-wave Fluxes: Issues of Implementation
Surface solar radiation reaching the Earth's surface is the primary forcing function of the land surface energy and water cycle. Therefore, there is a need for information on this parameter, preferably, at global scale. Satellite based estimates are now available at accuracies that meet the demands of many scientific objectives. Selection of an approach to estimate such fluxes requires consideration of trade-offs between the use of multi-spectral observations of cloud optical properties that are more difficult to implement at large scales, and methods that are simplified but easier to implement. In this study, an evaluation of such trade-offs will be performed. The University of Maryland Surface Radiation Model (UMD/SRB) has been used to reprocess five years of GOES-8 satellite observations over the United States to ensure updated calibration and improved cloud detection over snow. The UMD/SRB model was subsequently modified to allow input of information on aerosol and cloud optical depth with information from independent satellite sources. Specifically, the cloud properties from the Atmospheric Radiation Measurement (ARM) Satellite Data Analysis Program (Minnis et al., 1995) are used to drive the modified version of the model to estimate surface short-wave fluxes over the Southern Great Plain ARM sites for a twelve month period. The auxiliary data needed as model inputs such as aerosol optical depth, spectral surface albedo, water vapor and total column ozone amount were kept the same for both versions of the model. The estimated shortwave fluxes are evaluated against ground observations at the ARM Central Facility and four satellite ARM sites. During summer, the estimated fluxes based on cloud properties derived from the multi-spectral approach were in better agreement with ground measurements than those derived from the UMD/SRB model. However, in winter, the fluxes derived with the UMD/SRB model were in better agreement with ground observations than those estimated from cloud properties provided by the ARM Satellite Data Analysis Program. During the transition periods, the results were comparable
Climate Forcing by the Volcanic Eruption of Mount Pinatubo. Revised edition
We determine the volcano climate sensitivity and response time for the Mount
Pinatubo eruption. This is achieved using observational measurements of the
temperature anomalies of the lower troposphere and the aerosol optical density
(AOD) in combination with a radiative forcing proxy for AOD. Using standard
linear response theory we find sensitivity = 0.18 +- 0.04 K/(W/m2), which
implies a negative feedback of -1.0 +- 0.4. The intrinsic response time is
5.8+-1.0 months. Both results are contrary to the conventional paradigm that
includes long response times and positive feedback. In addition, we analyze the
outgoing longwave radiation during the Pinatubo eruption and find that its time
dependence follows the forcing much more closely than the temperature, and even
has an amplitude equal to that of the AOD proxy. This finding is independent of
the response time and feedback results.Comment: 22 pages, including 4 figures. Revised version of a paper [Douglass
D. H. and R. S. Knox (2005), Climate forcing by the volcano eruption of Mount
Pinatubo. Geophys. Res. Lett. 32, L05710.doi: 10.1029/2004GL022119]. Revision
is based on subsequent comments and replies to appear in the same journal.
Quantitative results have only minor change
Risk factors for vulnerable youth in urban townships in South Africa: the potential contribution of reactive attachment disorder
Reactive attachment disorder (RAD) is a psychiatric disorder developing in early or middle childhood as a consequence of significant failures in the caregiving environment. RAD results in children failing to relate socially, either by exhibiting markedly inhibited behaviour or by indiscriminate social behaviour and is associated with significant socio-behavioural problems in the longer term. This study examined RAD in South Africa, a setting with high environmental risks.
We recruited a sub-sample of 40 10-year-old children from a cohort enrolled during pregnancy for whom early attachment status was known. Children were purposefully selected to represent the four attachment categories using the data available on the strange situation procedure (SSP) at 18 months. The Manchester Child Attachment Story Task (MCAST) assessed current attachment and RAD was diagnosed using a standardised assessment package. A high proportion of the children (5/40% or 12.5%) fulfilled diagnostic criteria for RAD; all were boys and were displaying the disinhibited type. SSP classification at 18 months was not significantly associated with RAD symptoms at age of 10 years, while current MCAST classifications were. This suggests that children in this sample are at much higher risk of RAD than in high-income populations, and despite a fairly typical attachment distribution in this population at 18 months, RAD was evidenced in later childhood and associated with current attachment disorganisation.
The strengths of this research include its longitudinal nature and use of diagnostic assessments. Given increasing evidence that RAD is relatively stable over time and introduces longer term socio-behavioural risks; the high rate of RAD in this sample (12.5%) highlights potential developmental threats to children in low- and middle-income countries (LMICs). Our results should be interpreted with caution given sample size and risk of selection bias. Further research is needed to confirm these findings
Vitamin D and autism: clinical review
<br>Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with multiple genetic and environmental risk factors. The interplay between genetic and environmental factors has become the subject of intensified research in the last several years. Vitamin D deficiency has recently been proposed as a possible environmental risk factor for ASD.</br>
<br>Objective: The aim of the current paper is to systematically review the research regarding the possible connection between ASD and vitamin D, and to provide a narrative review of the literature regarding the role of vitamin D in various biological processes in order to generate hypotheses for future research.</br>
<br>Results: Systematic data obtained by different research groups provide some, albeit very limited, support for the possible role of vitamin D deficiency in the pathogenesis of ASD. There are two main areas of involvement of vitamin D in the human body that could potentially have direct impact on the development of ASD: (1) the brain (its homeostasis, immune system and neurodevelopment) and (2) gene regulation.</br>
<br>Conclusion: Vitamin D deficiency – either during pregnancy or early childhood – may be an environmental trigger for ASD in individuals genetically predisposed for the broad phenotype of autism. On the basis of the results of the present review, we argue for the recognition of this possibly important role of vitamin D in ASD, and for urgent research in the field.</br>
Aerosol and Cloud Microphysical Characteristics of Rifts and Gradients in Maritime Stratocumulus Clouds
A cloud rift is characterized as a large-scale, persistent area of broken, low-reflectivity stratocumulus clouds usually surrounded by a solid deck of stratocumulus. A rift observed off the coast of California was investigated using an instrumented aircraft to compare the aerosol, cloud microphysical, and thermodynamic properties in the rift with those of the surrounding solid stratocumulus deck. The microphysical characteristics in the solid stratocumulus deck differ substantially from those of a broken, cellular rift where cloud droplet concentrations are a factor of 2 lower than those in the solid cloud. Furthermore, cloud condensation nuclei (CCN) concentrations were found to be about 3 times greater in the solid-cloud area compared with those in the rift. Although drizzle was observed near cloud top in parts of the solid stratocumulus cloud, the largest drizzle rates were associated with the broken clouds within the rift area and with extremely large effective droplet sizes retrieved from satellite data. Minimal thermodynamic differences between the rift and solid cloud deck were observed. In addition to marked differences in particle concentrations, evidence of a mesoscale circulation near the solid cloud–rift boundary is presented. This mesoscale circulation may provide a mechanism for maintaining a rift, but further study is required to understand the initiation of a rift and the conditions that may cause it to fill. A review of results from previous studies indicates similar microphysical characteristics in rift features sampled serendipitously. These observations indicate that cloud rifts are depleted of aerosols through the cleansing associated with drizzle and are a manifestation of natural processes occurring in marine stratocumulus
Nitric Acid Particles in Cold Thick Ice Clouds Observed at Global Scale: Link with Lightning, Temperature, and Upper Tropospheric Water Vapor
Signatures of nitric acid particles (NAP) in cold thick ice clouds have been derived from satellite observations. Most NAP are detected in the Tropics (9 to 20% of clouds with T less than 202.5 K). Higher occurrences were found in the rare mid-latitudes very cold clouds. NAP occurrence increases as cloud temperature decreases and NAP are more numerous in January than July. Comparisons of NAP and lightning distributions show that lightning is the main source of the NOx, which forms NAP in cold clouds. Qualitative comparisons of NAP with upper tropospheric humidity distributions suggest that NAP play a role in the dehydration of the upper troposphere when the tropopause is colder than 195K
Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements
The impact of dust aerosols on the semi-arid climate of Northwest China is analyzed by comparing aerosol and cloud properties derived over the China semi-arid region (hereafter, CSR) and the United States semi-arid region (hereafter, USR) using several years of surface and A-Train satellite observations during active dust event seasons. These regions have similar climatic conditions, but aerosol concentrations are greater over the CSR. Because the CSR is close to two major dust source regions (Taklamakan and Gobi deserts), the aerosols over the CSR not only contain local anthropogenic aerosols (agricultural dust, black carbon and other anthropogenic aerosols), but also include natural dust transported from the source regions. The aerosol optical depth, averaged over a 3-month period, derived from MODIS for the CSR is 0.27, which is 47% higher than that over the USR (0.19). Although transported natural dust only accounts for 53% of this difference, it is a major contributor to the average absorbing aerosol index, which is 27% higher in the CSR (1.07) than in the USR (0.84). During dust event periods, liquid water cloud particle size, optical depth and liquid water path are smaller by 9%, 30% and 33% compared to dust-free conditions, respectively
- …