10 research outputs found

    Divergent trajectories of cellular bioenergetics, intermediary metabolism and systemic redox status in survivors and non-survivors of critical illness.

    Get PDF
    BACKGROUND: Numerous pathologies result in multiple-organ failure, which is thought to be a direct consequence of compromised cellular bioenergetic status. Neither the nature of this phenotype nor its relevance to survival are well understood, limiting the efficacy of modern life-support. METHODS: To explore the hypothesis that survival from critical illness relates to changes in cellular bioenergetics, we combined assessment of mitochondrial respiration with metabolomic, lipidomic and redox profiling in skeletal muscle and blood, at multiple timepoints, in 21 critically ill patients and 12 reference patients. RESULTS: We demonstrate an end-organ cellular phenotype in critical illness, characterized by preserved total energetic capacity, greater coupling efficiency and selectively lower capacity for complex I and fatty acid oxidation (FAO)-supported respiration in skeletal muscle, compared to health. In survivors, complex I capacity at 48 h was 27% lower than in non-survivors (p = 0.01), but tended to increase by day 7, with no such recovery observed in non-survivors. By day 7, survivors' FAO enzyme activity was double that of non-survivors (p = 0.048), in whom plasma triacylglycerol accumulated. Increases in both cellular oxidative stress and reductive drive were evident in early critical illness compared to health. Initially, non-survivors demonstrated greater plasma total antioxidant capacity but ultimately higher lipid peroxidation compared to survivors. These alterations were mirrored by greater levels of circulating total free thiol and nitrosated species, consistent with greater reductive stress and vascular inflammation, in non-survivors compared to survivors. In contrast, no clear differences in systemic inflammatory markers were observed between the two groups. CONCLUSION: Critical illness is associated with rapid, specific and coordinated alterations in the cellular respiratory machinery, intermediary metabolism and redox response, with different trajectories in survivors and non-survivors. Unravelling the cellular and molecular foundation of human resilience may enable the development of more effective life-support strategies.MRC, Evelyn Trust, Intensive Care Society, Royal Free Charit

    Hypoaminoacidemia underpins glucagon-mediated energy expenditure and weight loss

    Full text link
    Glucagon analogs show promise as components of next-generation, multi-target, anti-obesity therapeutics. The biology of chronic glucagon treatment, in particular, its ability to induce energy expenditure and weight loss, remains poorly understood. Using a long-acting glucagon analog, G108, we demonstrate that glucagon-mediated body weight loss is intrinsically linked to the hypoaminoacidemia associated with its known amino acid catabolic action. Mechanistic studies reveal an energy-consuming response to low plasma amino acids in G108-treated mice, prevented by dietary amino acid supplementation and mimicked by a rationally designed low amino acid diet. Therefore, low plasma amino acids are a pre-requisite for G108-mediated energy expenditure and weight loss. However, preventing hypoaminoacidemia with additional dietary protein does not affect the ability of G108 to improve glycemia or hepatic steatosis in obese mice. These studies provide a mechanism for glucagon-mediated weight loss and confirm the hepatic glucagon receptor as an attractive molecular target for metabolic disease therapeutics

    Investigating the Glucagon Receptor and Glucagon-Like Peptide 1 Receptor Activity of Oxyntomodulin-Like Analogues in Male Wistar Rats

    No full text
    Aims: To investigate the effect of Glu-3 OXM-like analogues on food intake and bodyweight in male rats. Background: Oxyntomodulin (OXM) is a natural agonist at both the glucagon receptor (GCGr) and the glucagon-like peptide 1 receptor (GLP-1r), and peripheral administration reduces food intake and increases energy expenditure in rodents and humans. Substituting the native glutamine (Gln) at amino acid position 3 of OXM for glutamate (Glu) has previously been shown to diminish GCGr activity without affecting GLP-1r activity. The effects of Glu-3 OXM analogues have not been investigated in rats. Methods: The effect of 2 Glu-3-substituted OXM-like analogues (eg, OXM14E3 and OXM15E3) on food intake and body weight was investigated in male Wistar rats during 6 days of daily subcutaneous (SC) administration. The effects of Glu-3 substitution on analogue binding and activity at the rat GCGr and rat GLP-1 receptor were investigated in vitro using Chinese hamster ovary or Chinese hamster lung cells. Results: We report the novel finding that 2 5-nmol/kg Glu-3 OXM-like analogues (OXM14E3 and OXM15E3) significantly increased rat body weight by up to 4% compared with the equivalent non-Glu-3 analogues (OXM14 and OXM15), without affecting food intake. The effect of OXM15E3 on body weight was dose–dependent. Glu-3 analogues, including Glu-3 OXM, decreased glucagon-mediated cyclic adenosine monophosphate accumulation in Chinese hamster ovary cells expressing the rat GCGr, suggesting they may be acting as antagonists. Conclusions: The results indicate Glu-3 OXM-like analogues might not be suitable tools to investigate the mechanism of OXM analogue action in a rat model because they significantly increase body weight independent of food intake. Glu-3 OXM analogues are partial agonists at the rat GCGr and may also act as antagonists, possibly resulting in the observed increase in body weight
    corecore