11 research outputs found

    Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion.

    Get PDF
    The molecular underpinnings of synaptic vesicle fusion for fast neurotransmitter release are still unclear. Here, we used a single vesicle-vesicle system with reconstituted SNARE and synaptotagmin-1 proteoliposomes to decipher the temporal sequence of membrane states upon Ca(2+)-injection at 250-500 μM on a 100-ms timescale. Furthermore, detailed membrane morphologies were imaged with cryo-electron microscopy before and after Ca(2+)-injection. We discovered a heterogeneous network of immediate and delayed fusion pathways. Remarkably, all instances of Ca(2+)-triggered immediate fusion started from a membrane-membrane point-contact and proceeded to complete fusion without discernible hemifusion intermediates. In contrast, pathways that involved a stable hemifusion diaphragm only resulted in fusion after many seconds, if at all. When complexin was included, the Ca(2+)-triggered fusion network shifted towards the immediate pathway, effectively synchronizing fusion, especially at lower Ca(2+)-concentration. Synaptic proteins may have evolved to select this immediate pathway out of a heterogeneous network of possible membrane fusion pathways.DOI:http://dx.doi.org/10.7554/eLife.00109.001

    Characterizing the chemical complexity of patterned biomimetic membranes

    Get PDF
    AbstractBiomembranes are complex, heterogeneous, dynamic systems playing essential roles in numerous processes such as cell signaling and membrane trafficking. Model membranes provide simpler platforms for studying biomembrane dynamics under well-controlled environments. Here we present a modified polymer lift-off approach to introduce chemical complexity into biomimetic membranes by constructing domains of one lipid composition (here, didodecylphosphatidylcholine) that are surrounded by a different lipid composition (e.g., dipentadecylphosphatidylcholine), which we refer to as patterned backfilled samples. Fluorescence microscopy and correlation spectroscopy were used to characterize this patterning approach. We observe two types of domain populations: one with diffuse boundaries and a minor fraction with sharp edges. Lipids within the diffuse domains in patterned backfilled samples undergo anomalous diffusion, which results from nonideally mixed clusters of gel phase lipid within the fluid domains. No lateral diffusion was observed within the minor population of domains with well-defined borders. These results suggest that, while membrane patterning by a variety of approaches is useful for biophysical and biosensor applications, a thorough and systematic characterization of the resulting biomimetic membrane, and its unpatterned counterpart, is essential

    Dynamic Architecture of the Purinosome Involved in Human De Novo Purine Biosynthesis

    No full text
    Enzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells. In this work, human breast carcinoma Hs578T cells have been utilized to demonstrate the preferential utilization of the purinosome under purine-depleted conditions. In addition, we have employed a confocal microscopy-based biophysical technique, fluorescence recovery after photobleaching, to characterize kinetic properties of the purinosome in live Hs578T cells. Quantitative characterization of the diffusion coefficients of all de novo purine biosynthetic enzymes reveals the significant reduction of their mobile kinetics upon purinosome formation, the dynamic partitioning of each enzyme into the purinosome, and the existence of three intermediate species in purinosome assembly under purine starvation. We also demonstrate that the diffusion coefficient of the purine salvage enzyme, hypoxanthine phosphoribosyltransferase 1, is not sensitive to purine starvation, indicating exclusion of the salvage pathway from the purinosome. Furthermore, our biophysical characterization of nonmetabolic enzymes clarifies that purinosomes are spatiotemporally different cellular bodies from stress granules and cytoplasmic protein aggregates in both Hs578T and HeLa cells. Collectively, quantitative analyses of the purinosome in Hs578T cells led us to provide novel insights for the dynamic architecture of the purinosome assembly

    Understanding biochemical processes in the presence of sub-diffusive behavior of biomolecules in solution and living cells

    No full text
    corecore