162 research outputs found

    Energy spectra stemming from interactions of Alfven waves and turbulent eddies

    Get PDF
    We present a numerical analysis of an incompressible decaying magnetohydrodynamic turbulence run on a grid of 1536^3 points. The Taylor Reynolds number at the maximum of dissipation is ~1100, and the initial condition is a superposition of large scale ABC flows and random noise at small scales, with no uniform magnetic field. The initial kinetic and magnetic energies are equal, with negligible correlation. The resulting energy spectrum is a combination of two components, each moderately resolved. Isotropy obtains in the large scales, with a spectral law compatible with the Iroshnikov-Kraichnan theory stemming from the weakening of nonlinear interactions due to Alfven waves; scaling of structure functions confirms the non-Kolmogorovian nature of the flow in this range. At small scales, weak turbulence emerges with a k_{\perp}^{-2} spectrum, the perpendicular direction referring to the local quasi-uniform magnetic field.Comment: 4 pages, 4 figure

    Rapid directional alignment of velocity and magnetic field in magnetohydrodynamic turbulence

    Get PDF
    We show that local directional alignment of the velocity and magnetic field fluctuations occurs rapidly in magnetohydrodynamics for a variety of parameters. This is observed both in direct numerical simulations and in solar wind data. The phenomenon is due to an alignment between the magnetic field and either pressure gradients or shear-associated kinetic energy gradients. A similar alignment, of velocity and vorticity, occurs in the Navier Stokes fluid case. This may be the most rapid and robust relaxation process in turbulent flows, and leads to a local weakening of the nonlinear terms in the small scale vorticity and current structures where alignment takes place.Comment: 4 pages, 6 figure

    Large Scale Structures a Gradient Lines: the case of the Trkal Flow

    Full text link
    A specific asymptotic expansion at large Reynolds numbers (R)for the long wavelength perturbation of a non stationary anisotropic helical solution of the force less Navier-Stokes equations (Trkal solutions) is effectively constructed of the Beltrami type terms through multi scaling analysis. The asymptotic procedure is proved to be valid for one specific value of the scaling parameter,namely for the square root of the Reynolds number (R).As a result large scale structures arise as gradient lines of the energy determined by the initial conditions for two anisotropic Beltrami flows of the same helicity.The same intitial conditions determine the boundaries of the vortex-velocity tubes, containing both streamlines and vortex linesComment: 27 pages, 2 figure

    How soil microbial biodiversity is modified by soil chemical parameters in differently managed olive orchards

    Get PDF
    Soil restoration is an important challenge of the 21st century, facing the increasing soil degradation, characterized by decline in quality and decrease in ecosystem goods and services. Several studies confirmed that sustainable orchard management practices might sequester atmospheric CO2 into soil, tree biomass and litter, enhancing soil organic carbon (SOC) stock and biodiversity. Higher biodiversity in ecosystems leads to greater stability and multifunctionality. In bacteria-plant interactions, both the bacteria and the plant profit from each other. These interactions play an important role in agriculture, positively affecting plant status and improving product quality. This study aimed at evaluating soil N/C parameters and microbial communities in soil, leaf (aerial part) and xylem sap between olive trees managed under sustainable practices for 17 years (i.e., no-tillage, drip irrigation with urban wastewater and recycling of polygenic carbon sources, like cover crops and pruning material) and trees managed under conventional ones (i.e., soil tillage, burning of pruning residues, mineral fertilization, rainfed), in a mature olive grove located in Southern Italy. In March 2017, samples of soil, leaf and xylem sap were collected in both treatments for DNA extraction and metagenomic analysis of the microbial communities. Soil samples were also collected for chemical and metabolic analyses. Results revealed that the long-term adoption of sustainable agricultural practices increased SOC, organic-N, and microbial biodiversity, with positive effects on plant growth protection and crop quality of olive plants

    The Humble Charisma of a White-Dressed Man in a Desert Place: Pope Francis’ Communicative Style in the Covid-19 Pandemic

    Get PDF
    The context of deep uncertainty, fear, and “social distancing” characterizing the COVID-19 pandemic has led to a need for cultural anchorages and charismatic leaders who may conjointly and effectively support human beings, strengthen their identity, and empower social commitment. In this perspective, the charismatic leadership of Pope Francis, which is widely shared not only within the religious world, may play a crucial role in facing emergency with existential reasons and psychological resources. The general aim of this work is to shed light on the communicative features of the charismatic leadership of Pope Francis during the pandemic emergency; in order to better understand his effectiveness, we analyzed both the core issues and his multimodal body signals in the global TV event of the Universal Prayer with the Urbi et Orbi Blessing. The multimodal and discursive analyses of the homily enabled us to define the “humble” charisma of the Pope, which is based upon on authentic and informal presence, manifested emotional signals (and, in particular commotion) showing features of equity and familiarity. From a discursive point of view, the common and overarching affiliation is constructed through a multiple focus on the “we” pronoun, which is constructed through socio-epistemic rhetoric. The results show how this integrated methodological perspectives, which is multimodal and discursive, may offer meaningful pathways detection of effective and persuasive signals

    Selective decay by Casimir dissipation in fluids

    Full text link
    The problem of parameterizing the interactions of larger scales and smaller scales in fluid flows is addressed by considering a property of two-dimensional incompressible turbulence. The property we consider is selective decay, in which a Casimir of the ideal formulation (enstrophy in 2D flows, helicity in 3D flows) decays in time, while the energy stays essentially constant. This paper introduces a mechanism that produces selective decay by enforcing Casimir dissipation in fluid dynamics. This mechanism turns out to be related in certain cases to the numerical method of anticipated vorticity discussed in \cite{SaBa1981,SaBa1985}. Several examples are given and a general theory of selective decay is developed that uses the Lie-Poisson structure of the ideal theory. A scale-selection operator allows the resulting modifications of the fluid motion equations to be interpreted in several examples as parameterizing the nonlinear, dynamical interactions between disparate scales. The type of modified fluid equation systems derived here may be useful in modelling turbulent geophysical flows where it is computationally prohibitive to rely on the slower, indirect effects of a realistic viscosity, such as in large-scale, coherent, oceanic flows interacting with much smaller eddies

    Small scale structures in three-dimensional magnetohydrodynamic turbulence

    Get PDF
    We investigate using direct numerical simulations with grids up to 1536^3 points, the rate at which small scales develop in a decaying three-dimensional MHD flow both for deterministic and random initial conditions. Parallel current and vorticity sheets form at the same spatial locations, and further destabilize and fold or roll-up after an initial exponential phase. At high Reynolds numbers, a self-similar evolution of the current and vorticity maxima is found, in which they grow as a cubic power of time; the flow then reaches a finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure

    Anisotropy and non-universality in scaling laws of the large scale energy spectrum in rotating turbulence

    Get PDF
    Rapidly rotating turbulent flow is characterized by the emergence of columnar structures that are representative of quasi-two dimensional behavior of the flow. It is known that when energy is injected into the fluid at an intermediate scale LfL_f, it cascades towards smaller as well as larger scales. In this paper we analyze the flow in the \textit{inverse cascade} range at a small but fixed Rossby number, {Rof0.05\mathcal{R}o_f \approx 0.05}. Several {numerical simulations with} helical and non-helical forcing functions are considered in periodic boxes with unit aspect ratio. In order to resolve the inverse cascade range with {reasonably} large Reynolds number, the analysis is based on large eddy simulations which include the effect of helicity on eddy viscosity and eddy noise. Thus, we model the small scales and resolve explicitly the large scales. We show that the large-scale energy spectrum has at least two solutions: one that is consistent with Kolmogorov-Kraichnan-Batchelor-Leith phenomenology for the inverse cascade of energy in two-dimensional (2D) turbulence with a {k5/3\sim k_{\perp}^{-5/3}} scaling, and the other that corresponds to a steeper {k3\sim k_{\perp}^{-3}} spectrum in which the three-dimensional (3D) modes release a substantial fraction of their energy per unit time to 2D modes. {The spectrum that} emerges {depends on} the anisotropy of the forcing function{,} the former solution prevailing for forcings in which more energy is injected into 2D modes while the latter prevails for isotropic forcing. {In the case of anisotropic forcing, whence the energy} goes from the 2D to the 3D modes at low wavenumbers, large-scale shear is created resulting in another time scale τsh\tau_{sh}, associated with shear, {thereby producing} a k1\sim k^{-1} spectrum for the {total energy} with the 2D modes still following a {k5/3\sim k_{\perp}^{-5/3}} scaling

    Structures in magnetohydrodynamic turbulence: detection and scaling

    Get PDF
    We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stems from numerical simulations of decaying three-dimensional (3D) magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536^3 points, and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X-point configuration embedded in 3D, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8,000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with MHD. We suggest that this range can be governed by turbulence dynamics as opposed to criticality, and propose an interpretation of intermittency in terms of propagation of local instabilities.Comment: 17 pages, 9 figures, 5 table

    Helicity detection of the astrophysical magnetic fields from radio emission statistics

    Full text link
    We discuss inverse problem of detection turbulence magnetic field helical properties using radio survey observations statistics. In this paper, we present principal solution which connects magnetic helicity and correlation between Faraday rotation measure and polarization degree of radio synchrotron emission. The effect of depolarization plays the main role in this problem and allows to detect magnetic helicity for certain frequency range of observable radio emission. We show that the proposed method is mainly sensitive to a large-scale magnetic field component.Comment: 5 pages, 6 figure
    corecore