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Structures in magnetohydrodynamic turbulence: Detection and scaling
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We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a
given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional
magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl
number is taken equal to unity, and we use a periodic box with grids of up to 1536 points and with Taylor
Reynolds numbers up to 1100. The initial conditions are either an X-point configuration embedded in three
dimensions, the so-called Orszag-Tang vortex, or an Arn’old-Beltrami-Childress configuration with a fully
helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time,
starting just after the peak of dissipation. We show that the algorithm is able to select a large number of
structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remark-
ably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the
cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also
study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters
in terms of their velocity—magnetic-field correlation. Self-organized criticality features have been identified in
the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the
moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that
this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of

intermittency in terms of propagation of local instabilities.
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I. INTRODUCTION

As the resolving power of experimental instrumentation
increases, turbulent flows as they occur in geophysics and
astrophysics are being examined with more accuracy, and the
multiplicity of scales in interactions becomes more apparent.
To take an example, the modal distribution of energy in the
solar wind has been known for a long time to follow a power
law close to the Kolmogorov prediction for incompressible
fluid turbulence [1] (see [2] for reviews), although its physi-
cal environment is infinitely more complex than what was
first envisaged by Kolmogorov, involving magnetic fields
and coupling to acoustic and whistler modes, to name but a
few phenomena at play. There are also numerous observa-
tions of spatially correlated turbulent structures and flows in
Earth’s magnetosphere. Recent observations from Cluster
and THEMIS multispacecraft missions [3,4] provide a so-
phisticated physical picture of a variety of significant effects,
for example, intermittent (spatially sparse) structures and
transient plasma transport associated with reconnection in
the tail plasma sheet and at the dayside magnetopause, for-
mation of shocks and small-scale magnetic filaments, the
Kelvin-Helmoltz vortices and coherent structures viewed as
the Alfvénic turbulence [5], as well as other effects. Signa-
tures of magnetohydrodynamics (MHD) turbulence are also
found, e.g., in the magnetosphere of Jupiter [6] and in the
interstellar medium [7].

Of the many features now being resolved in the observa-
tions, intermittency in turbulence is of critical importance as
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it is linked with magnetic energy conversion and dissipation
in solar-terrestrial plasmas. Two well-known examples of
this link are flaring activity in the solar corona and magneto-
spheric substorms in the tail plasma sheet of Earth’s mag-
netosphere. In both cases, free magnetic energy is released
through spatially localized reconfiguration of the plasma ge-
ometry, which is significantly affected by MHD turbulence.
Intermittent magnetic structures in the solar corona can gen-
erate multiple tangential discontinuities leading to energy
avalanches and strongly inhomogeneous dissipation [8—10].
An enhanced intermittency often reflects the formation of an
unstable magnetic topology. The latter has been explored in
detail when examining data from solar active regions which
reveal precursory dynamics of intermittent measures prior to
large solar flares [11]. MHD intermittency is also likely to be
a major factor defining initial locations of magnetic recon-
nection events in the nearly collisionless plasma of Earth’s
magnetotail [12—14]. It can be a triggering mechanism for a
variety of instabilities of plasma behavior at both kinetic and
MHD scales [12,15] responsible for multiscale particle pre-
cipitation in the night-time auroral region [16—18]. The tim-
ing, position, and energy output of such events—as well as
the structure of the solar wind mediating their interaction—
are largely unpredictable, reflecting the stochastic nature of
the underlying fluid dynamics.

The intermittent structures associated with dissipation in
turbulent flows are difficult to detect because they reside
mostly at small scale, in thin current and vorticity sheets, and
are entangled with ambient plasma flows in a topologically
complex way. These structures are dynamically important as
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they participate in the local heating of the medium, for ex-
ample, through localized magnetic reconnection events, and
are important not only in astrophysics but also in laboratory
plasmas (see, e.g., [19]). Intense and localized dissipative
structures in MHD flows have also been obtained numeri-
cally in both two [20] and three space dimensions [21]. In-
termittent dissipation in MHD simulations is found to be
typically stronger than that in neutral fluids (i.e., with a
stronger departure from self-similarity), and it can vary in
time, as observed in solar active regions [11,22]. A striking
feature of these structures, as found in many simulations, is a
high degree of correlation between the velocity and the mag-
netic field both globally [23] and locally [24]. However, the
precise relationship between these structures and the global
statistical properties of the flow is not well understood, al-
though it is known that in two dimensions and in three di-
mensions the structures can interact with the underlying tur-
bulent flow to affect properties such as the global dissipation
through local processes like reconnection. Furthermore, at
high Reynolds numbers these structures can have complex
geometries, e.g., they roll up and fold as observed in the
solar wind [25] and in direct numerical simulations (DNSs)
[26,27], significantly complicating attempts to make a con-
nection between structures and statistical properties.

Ensemble-based description of the geometry of intermit-
tent dissipation is an important issue as a turbulent flow is
characterized not only by the structures that develop within
but also by the statistical properties of the flow as a whole.
For fluids in two dimensions, the statistics of vortices have
been studied in detail [28] and a relationship between vortic-
ity and stream function has been found which can be as-
cribed to a distribution of signed vortices [29] using a maxi-
mum entropy principle [30] (see also [31] for a recent
analysis). In three dimensions, the situation is much more
complex but in one specific case, a Kolmogorov spectrum
for the energy has been obtained analytically from the dy-
namics of the stretching of a spiral vortex [32]. However,
while high-intensity dissipative structures in three-
dimensional (3D) MHD have been successfully studied for a
number of years [33], mostly through thresholding and visu-
alization of current and vorticity (see, e.g., [27,34-36] in
three dimensions and [37] for a thorough study of reconnec-
tion events in two dimensions), we are not aware of any
ensemble-based studies of turbulent structures observed at
intermediate to small intensity levels in high Reynolds num-
ber 3D MHD. A quantitative analysis, which requires the
development of new software tools, is particularly important
in the wake of two overarching developments: the emergence
of petascale computers that will produce vast amount of data
and detailed pointwise information about the relevant dy-
namical variables and their derivatives, as well as planned in
situ observations, in particular those in association with the
upcoming NASA’s Magnetospheric Multiscale Mission,
which will investigate the role of turbulence and other cross-
scale phenomena in fast magnetic reconnection.

Therefore, in this paper we propose a methodology for
analyzing cross-scale behavior of three-dimensional MHD
turbulence, enabling the detection of multiple dissipative
structures at arbitrary intensity levels. We use our tools to
extract current and vorticity structures in numerical simula-
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TABLE 1. Nomenclature of runs with N as the linear grid reso-
lution and v and # as the viscosity and magnetic diffusivity, respec-
tively. The Reynolds number Ry=UyL,/v and Taylor Reynolds
number Ry =Uy\/v (with U, as the rms velocity, L, as a character-
istic large scale, and N=27]Ey/ [k*E;(k)dk]"? as the Taylor scale
based on the total-energy spectrum) are both evaluated at peak of
dissipation.

Run Type N v="7 Ry Ry

I ABC 512 6.0x107* 3100 630
11 ABC 1536 2.0%x107* 9200 1100
I oT 512 75X 1074 3300 880

tion outputs with two distinct types of initial conditions. The
results obtained show the existence of robust scaling behav-
ior in both the inertial and dissipative regimes of scales in the
turbulent fluids we study. The reported scaling exponents
shed new light on the role of the initial conditions and of the
Reynolds number in the formation of intermittent dissipative
structures in current and vorticity fields. Finally, our analysis
supports the possibility of self-organized critical behavior for
some of the small-scale structures we detect with our algo-
rithm.

II. METHODOLOGY
A. Equations and flows

The incompressible MHD equations in dimensionless
Alfvénic units and in the absence of forcing read

a,v+v-Vv=—p51V7?+j><b+vV2v, (1)

b=V X (v X b)+ 7V’b, (2)

with v, b being the velocity and the magnetic fields, j=V
X b being the current density, P being the pressure, py=1
being the constant density, and V-v=V-b=0. When the vis-
cosity v and the magnetic resistivity # are both equal to zero,
the energy E;=(v’+b?)/2, cross helicity H-=(v-b)/2, and
magnetic helicity Hy,;=(A-b) (where A is the vector poten-
tial, b=V X A) are conserved. Equations (1) and (2) have
been solved in a three-dimensional box with periodic bound-
ary conditions and a pseudospectral code dealiased by the
2/3 rule; ky;,,=1 for a box of length Ly=2m, and with N
regularly spaced grid points, this leads to a maximum wave
number k., =N/3. At all times, kp/k, <1, with kj, denot-
ing the dissipation wave number, in order to ensure an accu-
rate numerical computation down to the smallest resolved
scale.

Two types of flows are studied in this paper, which were
computed on regular grids ranging from 5123 to 1536° points
(see Table I for a brief presentation of the runs; see also
[38,39] where these runs are described in the context of a
study of the general properties of MHD turbulence). In the
first flow (runs I and II), the fields are constructed from a
superposition of Arn’old-Beltrami-Childress (ABC) flows
(see, e.g., [40]), at wave numbers k=1 to k=3, to which
smaller-scale random fluctuations are added with a spectrum
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k=3 exp[-2(k/ko)]* for k>3 (see [38]). The phases of the
modes with k>3 are chosen from a Gaussian random num-
ber generator in such a way that the initial cross correlation
of the two fields is negligible: initially, Ey=FE;=0.5, H¢
~ 107, and H,,;=0.45.

Another flow we compute (run III) is that of the so-called
Orszag-Tang vortex (OT hereafter) generalized to MHD [34]
(see also [38] and references therein). This flow has been
studied at length in two space dimensions for its reconnec-
tion properties (it has a magnetic X point centered at a stag-
nation point of the velocity); its generalization to three di-
mensions is straightforward, with a simple sinusoidal
variation in the z direction. Initially, Ey=FEy=2, H-=0.41,
and H,,;=0. Note that the two types of initial conditions dif-
fer in their invariants: the OT flow has zero magnetic helicity
and a sizable cross correlation, whereas for the ABC flow, it
is the opposite.

B. Cluster detection

Turbulent flows exhibit small-scale structures with strong
gradients in the vicinity of which dissipation takes place. In
principle, detection of structures can be done on any physical
variables but more essential to a turbulent flow with its com-
plex small-scale behavior are vorticity and current. Indeed,
the primary channels of spatially localized energy dissipation
in a resistive MHD fluid are the Joule heating, proportional
to the squared current density j>=|V Xb|?, and the kinetic
dissipation that can be characterized indirectly by the
squared vorticity w?=|V X v|> (note that the local dissipation
of kinetic energy is proportional to the symmetric part of the
velocity gradient matrix, the difference stemming from the
fact that v is a vector whereas b is an axial vector).

Our analysis is thus focused on 3D arrays containing the
values of j2 and w? for each of the N* grid nodes of the
simulations listed in Table I. A grid node is treated as belong-
ing to a dissipative structure if the dissipation in this node,
expressed in terms of either field, exceeds the level of ay,
standard deviations above the mean value, with a,, € [1,3],

jzzh = () + ag NG - ()% (3)

wtzh = (o) +a; (0" - (0?)?, 4)

and where (-) denotes averaging over the entire simulation
volume as before. Intermittent dissipation structures in the j>
field (current sheets) are defined as spatially connected sets
of grid nodes satisfying the condition j>> jfh; the structures
in the w’ field (vorticity sheets) are defined similarly based
on w?>> . Our goal is to separate these structures from the
background and to study their individual properties such as
linear size, volume, or internal dissipation rate for subse-
quent ensemble-based surveys.

In order to overcome inherent memory limitations of stan-
dard cluster analysis algorithms such as, e.g., the label region
function of the Interactive Data Language, we have devel-
oped a technique enabling fast decomposition of multidimen-
sional data arrays into sets of dissipative structures while
dramatically reducing the amount of stored information.
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The first step of our technique consists of building a table
of contiguous intervals (activation sites) along a chosen di-
rection (“scanning direction”) where the studied data field
exceeds the detection threshold. We tabulate boundaries of
such intervals for all relevant positions in the d—1 coordinate
space orthogonal to the scanning direction, d being the di-
mensionality of the original data set. By design, the choice of
the scanning direction is arbitrary and does not affect the
detection results. The second step is to find and label spa-
tially connected clusters of activations using the “breadth-
first search” principle to avoid backtracking of search trees
representing individual clusters. We find that it is important
to consider all of the 3?—1 nearest neighbors of each grid
node, including the diagonal neighbors, when identifying
connected activations. Finally, the activation table is sorted a
second time according to the cluster labels in order to pro-
vide faster access to the detected structures.

The output data array preserves complete information on
the location and shape of all the contiguous regions in the
simulation volume where the threshold condition is fulfilled.
The size of this array is typically smaller by two orders of
magnitudes (depending on the threshold), compared to the
original data. For the purpose of this paper, the described
technique is used to identify structures in static snapshots of
a turbulent fluid. However, it can be easily extended to
higher-dimensional data sets representing spatiotemporal dy-
namics of turbulent structures, with the time axis being a
natural scanning direction.

C. Data analysis tools

The data sets analyzed in this paper are three-dimensional
cubes (d=3) described by x, y, and z coordinates. The scan-
ning direction is chosen parallel to the z axis. The activation
tables represent lists of z intervals with [j(x,y,z)]*>j2 or
[w(x,y,2)]*> w?, ordered according to their projected posi-
tion onto the x-y plane.

The following primary parameters are computed and
stored for each of the detected current and vorticity struc-
tures:

L;= 6 max|r,—r/], (5)
kleA;
Liey = 6 max |{x,y,2h = {x,9,2} (6)
klel;

Ri=\NLy,+L5+L2, (7)
V=8> k, (8)

kel;
A=8 Dk, 9)

ke A;

MIEA,
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2 jz(rk)

kel

2 w2("k)~

kel

Pjouyi=90 (10)

Here, A; is the set of all the grid node indices belonging to
the ith dissipative structure, the subindices k and / label in-
dividual grid nodes, M(k) is the full set of the 26 nearest
neighbors of the kth node, r; is the dimensionless position
vector of the kth node, and finally, 6=27/N is the grid spac-
ing, uniform and isotropic. The primary parameters of the
clusters are then as follows. L; is the linear size of the struc-
ture defined as the largest pairwise distance (diameter) be-
tween the points tabulated in A;, Ly, . are the maximum
dimensions of the structure projected onto each spatial direc-
tion, R; is the characteristic linear scale of the smallest Eu-
clidean volume embedding the whole structure, V; is the
physical volume occupied by the structure, and A; is the area
of its outer surface. Py; ,y; is the volume-integrated contribu-
tion of the structure to the kinetic and magnetic enstrophies,
with the global corresponding quantities defined as (),
=[j*dV and Q= [w?dV, respectively, and where the integral
is over the entire box. As mentioned before, except for a
constant of proportionality (v=17) these quantities are also
the dissipation rates, and in the following we refer to Py; ,y;
as the “kinetic and magnetic dissipation” of the structure.
In addition to these primary parameters, the following
measures characterizing the geometry of the structures were

used
_ v(ry) - b(ry)
X"‘<|v<rk>||b<rk>|>keA; )
H;=V/(A/2), (12)
C;=m(L/2)*/(AJ2), (13)

where y; is the cosine of the local alignment angle between
the velocity and the magnetic-field vectors averaged over all
the positions within the ith structure and H; and C; are, re-
spectively, the characteristic thickness of the structure and its
topological complexity, both computed under the assumption
of a sheetlike geometry which we validate later in the text. C
is defined as the ratio between the area of a circle with the
diameter equal to the linear size L; of the structure and the
actual area of one of the sides of the structure. As follows
from the definition, C increases if the structure has holes or
other irregularities reducing A for a given L and decreases if
the structure has a curved shape ensuring a more efficient
spatial filling for a fixed linear scale. The relative contribu-
tion of the second effect is expected to grow with L (larger
structures tend to roll up and fold more frequently than the
smaller ones), while the first effect is nearly scale invariant
as we show below.

Two major groups of statistics are invoked to quantify the
scaling behavior of the detected structures. The first group
includes a set of regression plots characterizing the geomet-
ric scaling of the structure parameters with respect to the
linear size L; the second group is represented by a set of
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probability distribution functions of structure parameters.
Both types of statistics are approximated by power-law de-
pendencies,

X(L) o LPx, (14)

pX) = X7, (15)

in which X denotes any of the parameters defined in Eqs.
(5)—(13), p(X) is an estimated probability density function of
X, and Dy and 7y are the geometric and the distribution scal-
ing exponents, respectively; the latter are evaluated sepa-
rately for the inertial and dissipative subranges of the flows
we study. The ranges of linear scales corresponding to these
subranges are determined based on the behavior of the en-
ergy spectra. For runs I and III, the inertial range scaling is
observed for wave numbers k €[5,30], an interval which
corresponds to L € [0.21,1.3]. For run II, the inertial behav-
ior is realized within the interval k e[5,50] yielding L
€ [0.13,1.3]. For the dissipative (subinertial) scaling regime,
we choose L e[0.025,0.18] in runs I and III and L
€[0.012,0.11] in run IL

The inertial and dissipative scaling ranges as specified in
terms of L are first applied to compute power-law fits de-
scribing the X(L) statistics. Next, the fits are used to evaluate
the inertial and the dissipative scaling ranges of the remain-
ing parameters, and to estimate the distribution exponents 7y
corresponding to these ranges.

III. CLUSTERS AND THEIR PROPERTIES

We now proceed to apply the algorithms described in Sec.
IT C to the data presented in Table I. We start by providing
some qualitative examples illustrating the complexity of the
intermittent turbulent structures under study, as well as the
performance of our cluster analysis code. Next, we present a
detailed analysis of scaling behavior of these structures in the
moderate-resolution runs I and III, followed by a compara-
tive analysis of the same properties in the high-resolution run
II. Our primary objectives will be to identify relevant param-
eters controlling the geometry of the observed structures, to
clarify the role of the initial conditions, and to compare the
geometry of the structures at inertial and dissipative scales.
Finally, we discuss a possible link with self-organized criti-
cality (SOC).

A. Physical structures that emerge

The top panel of Fig. 1 gives a perspective view of spe-
cific examples among about 700 dissipative regions detected
for the lower resolution ABC flow (run I) at =4 and with
a,,=2. The examples illustrate the complex multiscale nature
of the j? dissipation field, a typical feature of turbulent fluids.
The current structures can be as large as the whole grid (not
included in the figure to make smaller ones visible) or as
small as several grid spacings.

It should be emphasized that the upper panel in Fig. 1 is
not produced by color coding a continuous field as done
often in turbulence visualizations. Each of the structures was
first extracted by the algorithm described in Sec. III. After
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FIG. 1. (Color online) Top: global view of dissipative clusters in
the ;2 field selected by our algorithm in the ABC run I. The largest
cluster has been removed to let see the intermediate size clusters;
only one tenth of the remaining clusters are shown. Bottom:
zoomed-in view of two selected current clusters, showing strong
curvature of the sheets; the vorticity behaves similarly. The lower
left edge (direction marked with red in the color version) is parallel
to the z axis chosen as the scanning direction.

that, roughly 1/10 of the structures were “placed back™ in the
domain according to their original positions and spatial ori-
entations. We skipped the rest in order not to overcrowd the
resulting picture.

The apparent two-dimensional (2D) geometry of the
structures is typical for MHD turbulence, and it can be ob-
served reliably over the entire inertial range of scales as we
show in Sec. III B. For smaller scales, the 2D geometry be-
comes questionable partly because the current sheets tend to
fold or roll to form tubes which can no longer be resolved.

The bottom panel of the same figure presents two typical
examples of large-scale dissipative regions extracted by our
code, each occupying about 2000 grid nodes. As one can see,
the regions may have rather complicated overall shapes as-
sociated with twisting and splitting of current sheets. Since
the code does not rely on any a priori for the cluster shape or
size, it can efficiently identify both simple and complex (e.g.,
folded or rolled up) current sheets across the entire range of
relevant spatial scales.

Figure 2 further illustrates the ability of the code to detect
complex dissipative structures. Here, the gray background
field represents the spatial distribution of j2 in x-y cross sec-
tions of the data cube, with black (white) colors correspond-
ing to the largest (smallest) current magnitude. The structures
shown in the middle of the box (in red in the color version)
correspond to a large-scale current sheet identified by our
algorithm and embedded again into the turbulent flow to
demonstrate its consistency with the surrounding MHD en-
vironment. In most of the slices, the highlighted current sheet
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FIG. 2. (Color online) Two-dimensional visualization of the cur-
rent at 15 regularly spaced 512 by 512 (run 1) slices in the z direc-
tion with z € [0,70] (in pixel units). A dissipative cluster made up
of two twisted current sheets merging is shown in the middle of the
box (highlighted in red in the color version).

consists of two disconnected pieces which only merge within
a limited range of z values. Despite this topological complex-
ity, the structure has been correctly identified as a single set
of contiguous grid nodes.

B. Statistics of structures

Figure 3 shows the geometric scaling [dependence on
length L; see Eq. (5)] of the volume V, area A, Euclidian
scale R, thickness H, dissipation rate P;, and the complexity
C on intermittent dissipative structures in the j* field of run L
Figure 4 shows the probability distributions of the same pa-
rameters, except for C; the shade of gray (colors) used in the
figures represent four different combinations of the time of
the snapshots ¢ (with 7=4 or =5 in units of the turn-over
time of the problem; see [21,38]) and of the threshold ay,
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FIG. 3. (Color online) Geometric scaling of the current sheet
structures detected in run I based on the ;> field for several combi-
nations of the snapshot time ¢ and of the threshold parameter a,;:
t=4, a;,=2 (medium gray or red), and a,,=3 (black); r=5, a,=2
(light gray or green), and a,,=3 (dark gray or blue). Dotted
(dashed) vertical lines show the boundaries of the dissipative (iner-
tial) scaling ranges used for computing the scaling exponents re-
ported in Tables II and III. The statistics are roughly insensitive to
the detection threshold a,, and are stable in time.

(with a,;,=2 or a,;,=3). The results obtained for these param-
eters as well as for a,;,=1 (not shown) are indistinguishable
within statistical uncertainty. Therefore, the scaling proper-
ties reported in this paper are not sensitive to the detection
threshold, at least for a,, € [1,3], and they do not vary on a
time scale of the order of the turnover time. The dissipative
and inertial ranges of scales are shown in both figures with
vertical dotted and dashed lines, respectively.

The geometric scaling of the parameters V, A, R, and P
exhibits clear-cut power-law behavior, with the log-log
slopes [the D exponents of Eq. (15)] undergoing slight
changes at the transition between the two scaling regimes.
The inertial values of Dy and D, suggest that the studied
structures have a nearly two-dimensional geometry. This is
an expected result since the codimension of MHD turbulence
is equal to unity, suggesting sheetlike structures embedded in
three-dimensional space [34,35]. Similar D, estimates indi-
cating sheetlike dissipative structures were obtained for the
o field in the same simulation run. A more careful inspection
of the exponents obtained herein shows that the inertial range
values of both D, and Dy are systematically below 2, sug-
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FIG. 4. (Color online) Scaling of probability distributions of
current sheet structures detected in run I. Color coding and nota-
tions are the same as in the previous figure. Tilted dotted lines show
power laws in the inertial and dissipative ranges for r=4 and a,,
=2. As in the case of the geometric scaling, the shapes of the dis-
tributions are stable with respect to the detection threshold and
time.

gesting that the structures have irregular edges. This interpre-
tation is consistent with recently detected undulations of cur-
rent sheet edges in the OT turbulence in three dimensions
[27].

Unlike the geometric scaling of other size measures, the
thickness H of the current sheets (Fig. 3) does not vary sig-
nificantly with L. It seems to saturate at the largest inertial
scales revealing the existence of a characteristic thickness of
the structures of H=0.04-0.05 (about three to four grid
spacings). This thickness is likely representative of the tur-
bulent dissipation length €., whose estimated value is
slightly larger than 3 X27/512~0.04.

The geometric scaling of the topological complexity C
also demonstrates saturation in the inertial regime and is
clearly nonscale free at smaller scales. As already mentioned
in Sec. II C, the monotonic growth of C across a range of
scales can be attributed to an increasingly complex shape of
the structures and is also affected by their folding.

The distribution functions (Fig. 4) demonstrate pro-
nounced crossovers at the transition between the inertial and
dissipative regimes. Overall, these crossovers are more evi-
dent than the crossovers in the X(L) statistics shown in the
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TABLE II. Inertial range scaling exponents of current sheet
structures in the runs with ABC and OT initial conditions (see Table
I); length scales for analysis are L €[0.21,1.30], r=4, a,,=2, and
N=512.

Run I, j? Run I, w? Run III, /2 Run III, &?
D, 1.00+£0.00 1.00+0.00 1.00+0.00 1.00=0.00
7 220+022 257+022 1.86+023 1.94+0.23
Dy 0.94+0.03 092+0.01 093+0.03 0.97+0.02
TR 2.14*0.13 245*024 1.90*025 1.92+0.21
D, 1.71£0.02  1.72+0.07 1.72+0.12  1.92*0.05
s 1.66+0.08 1.81+0.16 1.66+0.11  1.39+0.09
Dy 1.90+£0.06 1.90+0.03 1.93+0.12 2.15%=0.05
Ty 1.61£0.07 1.61+0.06 149+0.03 1.36=0.10
Dy 0.18+0.07 0.19+0.04 021+0.01  0.20*0.05
T 351+0.13 3.78+0.09  4.13+20 7.02+2.0
Dp 244+0.10 232*0.04 248%0.17 2.96+0.08
™ 1.44+0.06 1.53+0.05 1.30=0.08 1.32+0.06

previous figure. The thickness distribution is rather steep. It
is likely to follow an exponential rather than a power-law
decay, which is consistent with the existence of a character-
istic thickness H as discussed above.

Tables II and IIT summarize inertial and dissipative range
scaling exponents for runs I and III, using a,,=2, at t=4,
corresponding to the maximum of dissipation. The first col-
umn in each table refers to the log-log slopes of the red
curves in Figs. 4 and 5. The exponent values reported in
Table II confirm that the geometry of both j? and w? struc-
tures observed in the inertial range is close to being two-
dimensions. However, the dissipative range scaling (Table
II0) is significantly different, with the volume and area geo-
metric exponents Dy and D, being close to 1.5, hinting at
fractal geometry of the structures with possible local aniso-
tropy.

The 7 exponents characterizing L (linear size) and R (Eu-
clidian scale) are almost identical in the inertial range (Table

TABLE III. Dissipative range scaling exponents of current sheet
structures in the runs with ABC and OT initial conditions (length
scales L €[0.025,0.18], =4, a,;,=2, and N=512).

Run I, j? Runl, >  RunIIl j> Run I, o?
D, 1.00£0.00 1.00+0.00 1.00+0.00 1.00=0.00
7 0.75+0.12 0.82+0.04 131+021 1.16*0.08
Dy 0.81+0.04 084+0.05 089+002 0.82+0.03
® 1.14+0.09 1.22+0.15 1.79£0.09  1.65+0.19
D, 1.40+0.11  1.44+0.14 1.53=0.08 1.29+0.13
A 095+0.15 1.04+0.10 1.38*0.12 129+0.14
Dy 1.51+£0.13  1.54+0.15 1.60+0.09 1.40=0.15
ey 1.10£0.12  1.16+£0.07 139+0.10 1.40=0.15
Dy 0.16+0.01 0.15+0.01 0.11+0.02 0.11*0.02
T 351+0.13  3.78+0.09  4.13+20 7.02+2.0
Dp 226+0.14 231+0.13 232+0.08 221+0.24
Tp 098+0.08 1.13+0.08 137+0.08 1.33+0.08
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FIG. 5. (Color online) Geometric scaling of current structures in
runs I and II detected by thresholding the j* field at two different
levels: N=1536, a,;=2 (medium gray or red lines), and a,,=3
(black); N=512, a,,=2 (light gray or green), and a,,=3 (dark gray
or blue). Dotted (dashed) vertical lines show the boundaries of the
dissipative (inertial) scaling ranges. The higher Reynolds number
ABC flow (run II) develops considerably thinner current sheet
structures described by smaller volumes and roughly the same sur-
face areas compared to the lower resolution run. The dissipation
rate in run II is slightly higher, and the geometry of current sheets
generated in this run is significantly more complex than the j2 struc-
tures observed in run I.

II) showing that either parameter can be invoked as a mea-
sure of linear scale. On average, the identity L=R implies the
absence of a preferred current or vorticity sheet orientation,
indicating that at these scales, the MHD flows examined here
are globally isotropic. The global isotropy obtains within the
inertial range of scales and is not preserved at smaller scales,
in accordance with previous results based on incompressible
decaying MHD turbulence using ABC flows [26,27]. Our
analysis extends in an independent way these earlier find-
ings, demonstrating the inertial range global isotropy in both
the OT and ABC runs.

Note the values of 7 shown in Tables II and III are equal.
This is a result of the steep non-power-law decay of the
thickness distribution, which prevented us from measuring
this exponent separately in the dissipative and inertial ranges
of scales.
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When comparing the inertial distribution exponents char-
acterizing the size of the structures, one can notice that these
exponents are systematically lower in run III (OT initial con-
ditions) than in run I (ABC initial conditions). This differ-
ence is not large but is statistically significant for several
exponent pairs. Alternatively, the dissipative range scaling
shows the opposite effect (OT distribution exponents are
higher than the ones in the ABC run). Since the dissipation
range exponents are smaller on average than the inertial ex-
ponents, the distribution crossover between the inertial and
dissipative regimes is more pronounced in run I as compared
to run III; on the other hand, this makes the statistics of OT
structures closer to scale invariant across the entire range of
the scales, as evidenced from the analysis of Dp, Dy, 7p, and
Ty estimates shown in Tables II and III. This may come from
the fact that the OT flow has a well-defined structure with
both partial zeros of the magnetic field (canceling of two
components) and global zeroes (b=0), leading to more or-
dered reconnection events and turbulence developing at later
times [34], whereas the ABC runs have some random noise
added at small scales which leads to more wrinkled struc-
tures of lesser extent.

To check the consistency of the pairs of D and 7 values
we obtained, we computed the exponents ay=Dy(7x—1) and
X e{R,A,V,P}, which should be equal for all scale-invariant
measures X of the examined sets of turbulent structures (due
to the conservation of probability). We found the ay values
to be approximately constant for most of the structure param-
eters, which confirms the validity of our measurements. The
only noticeable exception is «y whose value is inconsistent
with the other a exponents. This can be seen as additional
evidence of a non-power-law scaling for the thickness of the
dissipative structures, likely with a well-defined characteris-
tic scale. We also checked whether the values ay+1 in each
run are in agreement with the linear size distribution expo-
nents 7; as would be expected from the conservation of prob-
ability. We found these parameters to be in a good agreement
for the inertial range but different by a roughly constant fac-
tor for the dissipative range. The inertial range estimates tend
to be lower for run III relative to run I; for the dissipative
range they are higher. This difference suggests that the cross-
over behavior in the linear size scaling is more evident for
the ABC flow, in agreement with our conclusion based on the
results in Tables II and III.

This lack of complete universality in scaling of MHD
flows can be related to similar findings in different contexts.
For example, it was shown in [41] that different power-law
scaling for energy spectra can emerge with different initial
conditions for MHD flows having the same invariants (Ey,
Hc, and Hy, and Ey=E,, at t=0). Different energy spectra
have also been observed in the presence of an imposed uni-
form and strong magnetic field [42-44].

C. Analysis at higher Reynolds number

In order to determine what possible role the Reynolds
number plays in the statistics of the structures studied in Sec.
III B, we now present an analysis of one snapshot for run II
computed on a grid of 1536° points and taken at peak of
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FIG. 6. (Color online) Probability distributions of current struc-
tures in runs I and II. Tilted dotted lines show log-log regression
slopes for run II; the remaining notations are the same as in the
previous figure. With the exception of thickness distribution, all the
statistics here exhibit power-law scaling with consistent sets of in-
ertial range 7 exponents.

dissipation and contrast it with run I (the runs have Taylor
Reynolds number of 1100 and 630, respectively). The high-
resolution run (N=1536) is characterized by a larger Rey-
nolds number and is therefore expected to generate more
complex current and vorticity structures. A simple visual in-
spection of spatial patterns in j> and w? confirms this, and
our quantitative analysis provides useful clues on the nature
of the increased complexity in the high-resolution run.

Figures 5 and 6 show comparative statistics of runs I and
II for the j? field. We expect, based on an approximate con-
vergence of j> and ” scaling exponents in the lower reso-
lution runs (see Tables II and III), that the vorticity structures
have a similar dependence on N. Note that the boundaries of
inertial and dissipative ranges indicated by vertical lines in
Figs. 5 and 6 are computed for N=1536 and are thus differ-
ent from the boundaries in the previous figures at lower Rey-
nolds number.

The geometric scaling (Fig. 5) reveals a major distinctive
feature of run II: it has measurably thinner dissipative struc-
tures, as expected if we associate H with the dissipative scale
€ 4iss for this new run. Indeed, the volume of these structures
is approximately half an order of magnitude smaller than the
V estimates in run I made at the same linear scale L. At the
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same time, the scaling of the area, likely dependent on the
integral scale of the flow L,,, is remarkably similar. The
discrepancy between runs I and II has a straightforward ex-
planation, namely, significantly thinner structures in the
high-resolution ABC run. On average, the values of H in this
run are about three times smaller than the corresponding val-
ues in run I (for the same L). This difference is in agreement
with the gain in the Reynolds number achieved due to the
increase of the grid size from N=512 to 1536 (or the de-
crease of the viscosity; see Table I). As in the case of run I,
the dimensionless thickness of the smallest inertial structures
in run II is about three to five grid nodes. It is interesting that
the scaling of the dissipation rate corresponding to structures
for a higher Reynolds number flow is approximately the
same as in run I, despite a significantly smaller volume and
thickness of these structures. Therefore, the current sheets
generated on the grid with N=1536° points are more intense
[by a factor of =3 in terms of the current, using the H(L)
scaling in the inertial regime]. This is consistent with the
finding that there is a finite dissipation rate in MHD in three
dimensions [21], a fact well known in the 2D case [45,46]
and related to the possibility of fast reconnection in MHD
even in the absence of a Hall current (see [47] and references
therein for recent developments). Finally, the topological
complexity of the structures in the high-resolution run is
roughly twice the value characterizing the structures of run I,
with C=1 matching the transition between the inertial and
dissipative regimes. A similar match was found for N=512
(see Fig. 3).

The probability distributions of j> structures in runs I and
II (Fig. 6) show that in spite of the essential difference in the
current sheet thickness, energy density and topological com-
plexity evident from the geometric scaling, the probabilistic
essence of the two runs is, in fact, quite similar. To a first
approximation, the shape of the distributions is not influ-
enced by Reynolds number, at least for the small range ex-
amined here. As in the case of the lower Reynolds number
simulation at lower resolution, the distributions in run II ex-
hibit well-defined “breaks” coinciding with the transition be-
tween the two scaling regimes (and again shifted toward
smaller scales for the high Ry run). It also shows a rapid
decay of the probability distribution p(H), consistent with
the equivalent distribution in run I.

Figure 7 displays the numerical values of several key
scaling exponents, reflecting the differences and the similari-
ties between high- and low-Reynolds number ABC runs. The
overlapping error bars indicate that the mean exponents are
indistinguishable at 99% confidence level. The plots confirm
that the distribution exponents are roughly independent of Ry,
whereas the geometric exponents tend to be larger in run II
and are also closer to the value of two, as expected for ide-
alized purely two-dimensional structures. The difference is
consistent with the previously discussed observation that the
current sheets in run II are considerably thinner and might
therefore be better described by a 2D scaling model within
the inertial range of scales.

Finally, note that the proximity of Dy in run II to a value
of unity indirectly indicates that the current sheets generated
in this fluid are somewhat more isotropic in terms of their
global (large-scale) spatial orientation compared to run I. For
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FIG. 7. (Color online) Comparison of scaling exponents of cur-
rent structures in runs I and II (N=512 and N=1536, respectively)
detected by thresholding the j* field at the level of two standard
deviations above the mean. The error bars are approximate confi-
dence intervals (+3 standard errors) for each exponent. The plots
show consistent distribution exponents but greater geometric expo-
nents (D;, Dy, and Dy) at higher Reynolds number. This difference
becomes less prominent at higher detection thresholds (not shown).
Similar tendencies are observed for the vorticity structures.

a fully isotropic macroscopic orientation, we expect the two
linear measures, R and L, to be directly proportional.

Overall, we conclude that the Reynolds number of the
flow, at least in the case of unit magnetic Prandtl number
(v=m), influences the geometry of the resulting dissipative
structures, making them more 2D-like (higher aspect ratio)
and better mixed in space, but it does not seem to alter their
statistical properties as reflected by the family of the distri-
bution functions we have studied.

D. Role of velocity—-magnetic-field correlations

It has been known for quite some time that the amount of
correlation between the velocity and the magnetic field plays
a significant role in the dynamics of MHD turbulence (see
[48] for a review and more recent works in [24,49]). This
role can be global, altering the scaling of energy spectra
when H., normalized by Ey, is strong, i.e., close to *1; it
can also be important, even when globally weak, since struc-
tures with strong alignment between v and b develop rapidly
in a turbulent flow [23] (note that H - is not globally positive
definite). It thus appears as a natural application of our de-
tection algorithm to examine the properties of the selected
clusters in this light.

Our examination of the data reveals a significant differ-
ence in the velocity—magnetic-field alignment for the OT and
ABC runs, in agreement with earlier analyses [23]. Defining
x as the cosine of the local alignment angle between v and b,
the OT run is characterized by an asymmetric p(y) distribu-
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FIG. 8. (Color online) Scaling characteristics of current and vor-
ticity structures in ABC and OT flows (runs I and III, N=512,
t=4, ay;=2) addressing the role of the velocity—magnetic-field
alignment. In run I, structures in j> and w? are shown with light
gray (green) and dark gray (blue) lines, whereas in run III, they are
given with middle gray (red) and black lines. Note a similarity in
the volume and area statistics and a significant difference in the
alignment patterns of the two flows (y is the cosine of the local
alignment angle between v and b). In addition to a stronger normal-
ized H¢, the OT flow exhibits systematically thinner structures
(smaller thickness for a given linear size for both ;> and ®?) com-
pared to the ABC flow.

tion (with a skewness of =~1.0), having a sharp maximum at
x=+1. The alignment distribution suggests a prevailing par-
allel orientation of v and b fields inside the inertial range
structures, with an average y=0.4. The ABC run shows a
nearly symmetric p(y) distribution (skewness =0) with the
average alignment close to zero as well (see Fig. 8, bottom
right panel). The stronger velocity—magnetic-field alignment
in the OT fluid may be the primary reason for its distinct
scaling behavior as represented in Tables II and III. As we
have already stressed, the OT 7 exponents tend to be less
sensitive to the crossover between the inertial and dissipative
ranges of turbulence compared to the ABC run. This
tendency is especially clear in the statistics of vorticity struc-
tures (black lines in Fig. 8; see also the last column in
Table II). At the same time, the geometric scaling of most of
the parameters of j> and w? structures, in particular V(L) and
A(L) dependencies, is practically the same for the two flows
except for the geometric scaling of H, implying that the
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current and vorticity sheets are somewhat thinner in the
OT run.

Indeed, the alignment effect appears to have limited or no
impact on scaling behavior of the intermittent structures.
Surprisingly, the differences in the geometric and probabilis-
tic scaling of OT and ABC turbulence are strikingly small
compared to the dramatic difference in the y distributions
characterizing the two runs. It is also interesting that the p(x)
distributions have the same functional form for current and
vorticity structures (for a given initial condition), suggesting
the existence of a strong j-w coupling correlated with the v-b
alignment; this result may be linked to the fact that, when
writing the MHD equations in terms of the Elsdsser fields
z*=v = b for which the nonlinear terms reduce to an advec-
tion of one field by the other, one sees that the dynamics
strongly couples the velocity and magnetic fields (and their
derivatives) [24]. Other alignments could be considered [50]
from the point of view of structure analysis, basically those
having a direct impact on the dynamics, such as the Lamb
vector v X w, the Lorentz force j X b, and Ohm’s law v Xb.
This is left for future work.

IV. POSSIBLE LINK WITH SELF-ORGANIZED
CRITICALITY

The analysis presented in this section is motivated by the
intensively debated connection between intermittent struc-
tures in turbulence and SOC, the latter having been discussed
intensely in the literature over the past decade. In particular,
SOC has been proposed as the underlying physical mecha-
nism responsible for the intermittency of the dissipation field
in high-Reynolds number turbulent fluids [18,51-53] (for a
review of SOC in the context of solar wind and the magneto-
sphere, see, e.g., [54,55]). It has been suggested that dissipa-
tive regions can communicate over large distances by anal-
ogy with critical avalanches in sandpile models of SOC,
producing conditions for a statistically steady state of non-
equilibrium critical behavior responsible for multifractal in-
homogeneous dissipation [56,57].

To test the SOC avalanche hypothesis, one needs to obtain
a collection of probability distribution functions describing
the dissipative regions and to study their scaling. The hall-
mark of SOC is the power-law shape of avalanche distribu-
tions over a number of parameters, some of which are stud-
ied here. According to the definition of SOC, avalanches are
essentially spatiotemporal objects composed of all grid nodes
involved in the formation of a given dissipative structure
over its entire life cycle. Consequently, in order to rigorously
verify SOC behavior in a turbulent fluid, one needs to detect
and analyze its dissipative structures in both space and time.
The results of our present analysis refer to static three-
dimensional vorticity and current clusters observed at a fixed
time; thus, these results cannot provide a definite answer to
the question of whether or not incompressible MHD turbu-
lence is related to SOC. Nevertheless, they can be used to
make some preliminary estimates (see [58] for an analysis of
flaring activity in one space dimension and [59] for the 2D
case).

In the following derivation, we are assuming that the spa-
tial intermittent structures explored in the previous sections
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TABLE IV. Avalanche size and avalanche lifetime scaling ex-
ponents estimated in the dissipative range using the relations 7gy
=14+Dx(7y—1)/Dg and 7ry=1+Dx(74y—1)/Dy, with X e{A,V,P}
[see Eq. (16)] with the mean-field geometric exponents Dg=2 and
D=1 and the 7y exponents taken from Table I (=4, a,,=2, and
N=512).

Run I, j? RunI, >  RunIIl j> RunIII, o’
Tsa 0.97 1.03 1.29 1.19
Tov 1.08 1.12 131 1.28
Top 0.98 1.15 1.43 1.36
(7g) 1.01+0.06 1.10+0.06 1.34=0.08 1.28*0.09
Tra 0.93 1.06 1.58 1.37
Ty 1.15 1.25 1.62 1.56
Trp 0.96 1.30 1.86 1.73
(1) 1.01£0.12 1.20+0.13 1.69+0.15 1.55+0.18

are static snapshots of dynamic intermittent events evolving
in space and time. Using the SOC approach, each of these
events can be described by the spatiotemporal size S repre-
senting the total number of grid nodes involved in the event
over its lifetime 7. The distributions of S and 7 are expected
to scale as p(S)~S~™ and p(T)~ T ™. The avalanche size
and lifetime scaling exponents (7¢ and 77) are usually con-
sidered being the primary measures of criticality defined by
the universality class of a particular set of symmetries de-
scribing local interactions between the nodes [60].

Due to the absence of temporal dimension in our present
analysis, neither of the two SOC exponents is directly acces-
sible. However, by applying once again the conservation of
probability, we can evaluate them indirectly through

TS,T= 1 +DX(TX_ 1)/DS,T’ (16)

in which S~ LPs, T~ LP7, and X stand for one of the static
measures of the structures exhibiting power-law scaling as
already discussed.

We start by analyzing in this light the dissipative subrange
of scales. In the case of the ABC flow, the proximity of 7y to
the value 1 in that range (see Table III) makes uncertainty of
Dg and Dy unimportant. For a wide range of Dg and Dy
estimates presented in the SOC literature and for various
choices of X, Eq. (16) predicts that the values of both the
avalanche size and the lifetime distribution exponents for
this flow are also close to unity. Thus, for instance, by plug-
ging in 7, and Dy, for current structures in the ABC flow [61]
and using mean-field values for Dy and Dy (respectively, 2
and 1) [62], one gets 7= 77~ 1. Interestingly enough, the
same calculation for the OT run yields a significantly differ-
ent result, namely, 74~ 1.3 and 7= 1.6.

Table IV summarizes the estimated values of 7¢ and 71
exponents obtained using relation (16) in which we plug in
the dissipative range scaling exponents characterizing vol-
ume, surface area, and energy dissipation rate in j> and w?
structures. We do not use the linear size exponents in this
calculation since they are less reliable due to their depen-
dence on the orientation of the structures (see the discussion
of the small-scale anisotropy in Sec. III B).
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FIG. 9. (Color online) Probability distributions of the dimen-
sionless volume and area in runs I (middle gray or red), IT (light
gray or green), and III (dark gray or blue), demonstrating a wider
range of small-scale power-law behavior in the high Ry (high-
resolution) simulation.

While the ABC avalanche exponents obtained from Eq.
(16) in the dissipative range are somewhat low compared to
SOC exponents usually reported in the literature, the OT
exponents clearly fall within the range of values expected for
many SOC sandpiles. Thus, for example, they are a very
close match to the 2D realization of the directed Abelian
sandpile model (DASM) [62], an exactly solvable version of
the paradigmatic Bak-Tang-Wiesenfeld model [63]. The
DASM avalanche distributions are described by the expo-
nents 7,=4/3 and 7;=3/2 which are compatible with the OT
values reported in Table IV. Several other avalanching mod-
els are approximately consistent with the predicted OT expo-
nents, such as, e.g., the Manna two-state model [64], the
Bak-Snappen model of punctuated evolution [65], and the
absorbing state phase-transition model [66], all in two spatial
dimensions. The distinctive feature of DASM which might
be responsible for the best match with critical behavior in the
dissipative range of the OT flow is the existence of the pre-
ferred spatial direction in which the avalanche fronts propa-
gate. As we have mentioned earlier in the text, the local
spatial anisotropy seems to be a significant factor in the dis-
sipative range scaling of the studied fluids, and therefore the
observed agreement between OT and DASM avalanche ex-
ponents may be more than just a coincidence.

Besides the existence of well-known SOC universality
classes consistent with the exponents obtained from the
analysis, a significant piece of evidence for the involvement
of SOC dynamics in the formation of multifractal intermit-
tent dissipation fields comes from the statistics of dimension-
less measures of dissipative structures representing their size
and geometry in terms of discrete grid nodes, by analogy
with sandpile simulations. A predicted effect for a SOC sys-
tem is an expansion of the range of the power-law scaling of
such measures for increasingly large lattice sizes, known as
the critical finite-size scaling (FSS) behavior.

Our analysis shows that the probability distributions of
dimensionless quantities of turbulent structures (e.g., dimen-
sionless volume V/ & and area A/ &; see Fig. 9) exhibit sig-
natures of FSS, assuming that SOC avalanches do develop in
the dissipative (subinertial) range of scales. A comparison of
dimensionless distributions in high- and low-resolution runs
shows that the range of power-law scaling describing the
smallest structures and, thus involving a limited number of
grid nodes, expands toward larger scales as N increases from
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512 to 1536. This type of behavior is among the most dis-
tinctive signatures of SOC systems. It indicates that the in-
trinsic mechanisms of avalanching dynamics are scale-free
with no limit other than the limited size of the Reynolds
number. In the theory of critical phenomena, the tendency
seen in Fig. 9 is usually approximated by truncated power-
law distributions of the form

p(X) = X"Xf(XIX,), (17)

where f is an appropriate scaling function and X, is the (ap-
parent) characteristic scale of structures increasing with a
discrete system size N as X.~N"X. Due to the scale-free
nature of SOC states, we also expect that xy is close to the
corresponding geometric exponent Dy (because the largest
linear scale associated with N has the same effect on the
distributions of structure sizes as the intermediate scales as-
sociated with L). However, it should be recognized that un-
like FSS in ordinary SOC simulations with simple boundary
conditions, the upper scale of the presumed SOC behavior in
our turbulent runs is controlled by a complex process—the
inertial range turbulent cascade. Consequently, the functional
form of the scaling function f in a turbulent fluid should
perhaps include a scale-free component accounting for the
fluid turbulence at larger scales (in contrast, e.g., to the ex-
ponentially decaying f commonly used in sandpile simula-
tions).

The interpretation of SOC exponents found in the inertial
range is more ambiguous. Technically, they are not far from
the values 7¢=1.5 and 77=2 describing SOC dynamics in
three-dimensional stochastic and deterministic directed sand-
piles (see [67] and references therein). However, this simi-
larity can be misleading as the above-mentioned models pos-
sess a distinct geometry consisting of two spatial dimensions
in which dissipative events can grow isotropically and one
dimension, allowing for unidirectional (directed) growth
only. Whether or not the growth of dissipative structures in
the inertial range MHD turbulence contains such a preferred
direction implying strong mesoscopic anisotropy remains to
be verified. Until then, we only associate the dissipative
range with SOC behavior. It may be the case that the accu-
racy of the present analysis in the inertial range is insufficient
or that SOC behavior is only limited to the dissipative range.
A direct spatiotemporal analysis or growing and decaying
dissipative structures will be instrumental for validating our
SOC observations in the inertial range and for reducing the
uncertainties in the exponents. Such analysis will also allow
for a study of whether the ergodicity assumptions often used
in the study of turbulent flows are valid [68].

Overall, the results obtained in this paper suggest that
small-scale dissipative structures, observed below the small-
est inertial range scale, are associated with SOC. If this hy-
pothesis is correct, the small-scale intermittency in 3D MHD
turbulence can be interpreted as a propagation of local insta-
bilities from small to large scales indicative of SOC ava-
lanches. This propagation should reflect a tendency of the
smallest dissipative structures, such as, e.g., current fila-
ments, to merge into larger clusters in an avalanche fashion,
and it does not necessarily imply a transport of energy in
Fourier space in the opposite direction as to the main (direct)
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turbulent cascade of energy. One could think, for example, of
larger dissipation events, like major flares in the solar co-
rona, emerging from a cooperative behavior of smaller
events (e.g., nanoflares), an effect reminiscent of nonlocality
of nonlinear interactions between widely separated scales
[69]. This possibility has been discussed intensively in the
literature, in particular, in the framework of forest-fire mod-
els of multifractal inhomogeneous dissipation in turbulent
media [57]. Our results seem to be the first (but so far indi-
rect) evidence of such behavior in incompressible MHD ob-
served through DNS in three dimensions, even though, of
course, SOC behavior in MHD has been advocated for a long
time following the pioneering paper of Lu and Hamilton [70]
(see also [18,53,59,71]).

In a more general context, to fully describe SOC behavior
in turbulence one would have to understand several funda-
mental aspects shaping the dynamics of the intermittent
structures. For example, what plays the role of a threshold in
MHD turbulence, so that avalanches (dissipative events) of
various sizes can happen? It may be a collective effect trig-
gered by sweeping of large scales, pushing together
magnetic-field lines of opposite polarities to come in close
contact as has been proposed by Klimas et al. [12] or it may
be the instability of current (or vorticity) sheets below a
given thickness (at a fixed viscosity or resistivity). If SOC is
indeed identified, other relevant questions involve, e.g., what
is the underlying phase transition, what is the order param-
eter, and what field can be associated with the susceptibility
that diverges at the critical point? These questions may not
have clear answers, as the identification of criticality in fluid
and MHD turbulence is not straightforward, although an ex-
ample in the context of atmospheric precipitation in tropical
convection has been put forward recently [72].

Finally, it is worth mentioning that intermittent bursts of
energy transfer and dissipation have been observed in MHD
in the so-called shell models for turbulent flows [73]. These
models can be viewed as a poor-man template, set on a lat-
tice, for the temporal evolution of the Navier-Stokes or MHD
equations (see [74] and references therein for a recent re-
view); in the simplest case, one retains only nearest-neighbor
interactions which are built in such a way that the quadratic
invariants are preserved. Shell models have been known to
exhibit avalanche behavior as well (see [74,75] for a discus-
sion), although SOC interpretation of energy avalanches in
such simplified models of turbulent cascade remains ques-
tionable, as there are indications that only spatially distrib-
uted systems with clear time-scale separation between the
driving and dissipation mechanisms are able to exhibit robust
SOC signatures [76].

V. CONCLUSION
A. Summary of the results

In this paper, we have analyzed three sets of data stem-
ming from high-Reynolds number numerical simulations of
MHD turbulence in three dimensions at a magnetic Prandtl
number of unity; periodic boundary conditions are assumed
and there is no imposed uniform magnetic field nor is there
any forcing. Initial conditions are either the so-called 3D
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Orszag-Tang (OT) vortex or the Arn’old-Beltrami-Childress
(ABC) flow; the two flows have different velocity—magnetic-
field correlation H. Numerical resolutions range from 5123
grid points to 1536°, with Taylor Reynolds numbers R, vary-
ing from 630 to 1100.

We find that current and vorticity sheets behave in similar
fashion and that, overall, the probabilistic properties of these
structures depend on neither R, nor the normalized value of
H, i.e., the degree to which v and b are globally aligned.
Other factors like the detection threshold used for the analy-
sis (within one to three standard deviations above the mean)
or the time at which the turbulent fluid is analyzed (after
reaching the peak of the dissipation) appear to be irrelevant
as well.

As expected, the thinner and more complex the dissipa-
tive structures are (and closer to being two dimensions) the
higher the Reynolds number are. Compared to the ABC flow,
the OT run has more efficient kinetic-energy dissipation
(higher dissipation rate per unit volume) and its distributions
of structure parameters are closer to a “monofractal” shape
across all scales, i.e., approximately described by a single
power law. The high R, run has a higher dissipation rate per
unit volume (but roughly the same rate per unit surface) and
essentially the same form of probability distributions as in
the low R, run.

The inertial scaling exponents characterizing the OT and
ABC flows are similar, with differences between the expo-
nents more marked at smaller scales. The exponents obtained
at these scales (in the dissipative subrange) can be associated
with SOC universality classes. Our findings suggest that
whereas the inertial-range scaling is more likely to be dic-
tated by MHD turbulent cascades (energy spectra and struc-
ture functions in general), the dissipative range of scales may
be governed by self-organized criticality; this is perhaps the
main finding that stems from our cluster analysis.

Why is the SOC scaling found in the dissipation range?
Simply because this is where the approximately ideal dy-
namics breaks down; at the small-scale end of the inertial
range detailed conservation of quadratic invariants is vio-
lated by nonzero dissipation. In fact, if there are singularities
in such flows, the dissipation can be order unity (in terms of
the characteristic velocity and length). Such exchanges must
be bursty insofar as they are concentrated on a small scale;
they are rare as they only occur in special cases, and thus
they must be strong as they provide the dissipation on aver-
age to balance the energy injected by the larger scales. In
other words, the stochastic (and irreversible) element comes
from the fact that dissipative events occur where vortices and
currents of opposite polarities meet at random time because
of the randomness of large-scale structures for times longer
than the eddy-turnover time (see, e.g., [68] for studies of 1/f
noise in turbulent flows). This results in strong bursts when
the system undergoes dissipation events (such as reconnec-
tion) with reconfiguration of the fields. In this simplified pic-
ture, the critical parameter for transition may be the Kolmog-
orov dissipation length €, in scale space, or rather the
dimensionless local Reynolds number u,{/v of order unity,
by definition, at € ~ € ;.
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B. Final remarks

In conclusion, we have shown that the cluster algorithm
presented in Sec. II B and used throughout this study can
easily and systematically detect a multitude of current and
vorticity structures in a turbulent flow, with a large dynami-
cal range in their intensity, and that it readily leads to an
analysis of their relevant physical properties. As important
perhaps, one can then study some other statistics of such
structures, such as the alignment between velocity and mag-
netic field. Although the analysis presented in this paper
deals with properties of decaying flows in the vicinity of the
peak of dissipation, one can note that such flows are thought
to behave similarly to the statistically steady forced case
since their dynamics is quasisteady for some interval of time
around that peak (see, e.g., [26,27]). It would however be of
interest to study the statistically stationary case of MHD tur-
bulence; this is left for future work.

Relating the scaling exponents found in a given analysis
to other, more traditional measures of complexity in a turbu-
lent flow dealing, e.g., with correlation functions, are not
necessarily a straightforward task. Some fascinating results
concerning the behavior of two-dimensional Navier-Stokes
turbulence have been unraveled recently [77] with no clear
direct connection to the scaling of, say, the energy spectrum;
in this 2D case with an inverse cascade of energy to large
scales, the study of the zero-line vorticity contours led to the
discovery of a link with a specific class of percolation and
anomalous diffusion through the scaling laws for, e.g., length
versus diameter. The fact that the dynamics of turbulent
flows contains elements of critical phenomena and conformal
invariance associated with invariance properties and symme-
try groups of the underlying equations points to the need to
further our studies of such flows using scaling tools.

There are other algorithms that can examine coherent
structures in turbulent flows, following the pioneering work
for 2D Navier-Stokes fluids [28]. Prominent among them
nowadays is the wavelet decomposition [78] which leads to a
vision of turbulent flows in three dimensions as a set of
coherent structures (vortex filaments in the fluid case) with a
Kolmogorov spectrum, together with incoherent quasi-
Gaussian eddies which contain most of the degrees of free-
dom and which are in some sense slaved to the coherent
structures; a similar analysis has been done recently in MHD
[79].

One can also base the statistical description of turbulent
fluctuations on their incremental changes. Such an approach
is particularly useful when both very small and extremely
large fluctuations are important. The methodology used in
our work is focused on clusters with threshold cutoffs, which
clearly eliminates the smallest fluctuations. Recently, a new
data analysis technique, the rank-ordered multifractal spec-
trum [80], has been proposed as a means to study fluctuation
increments in strongly intermittent systems. This technique
could, in principle, be capable of addressing SOC behavior
in a turbulent system without eliminating small-scale fluctua-
tions. It would be of interest to apply this technique to better
understand the role of stochastically generated current and
vorticity gradients in MHD turbulent flows.

The use of visualization techniques and lossless compres-
sion of data is yet another promising tool to analyze turbu-
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lent structures [36,81]. Combining such tools with the analy-
sis of hypercubes of data taking into account the temporal
dimension of structures may prove fruitful, but in three di-
mensions this represents a challenge that we want to tackle
in the near future, both for fluids and MHD; it will allow for
a better connection between turbulence, intermittency, struc-
tures, and self-organized criticality.
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