32 research outputs found

    Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study

    Get PDF
    Background and aims: Familial hypercholesterolemia (FH) is an inherited disorder characterized by high levels of blood cholesterol from birth and premature coronary heart disease. Thus, the identification of FH patients is crucial to prevent or delay the onset of cardiovascular events, and the availability of a tool helping with the diagnosis in the setting of general medicine is essential to improve FH patient identification.Methods: This study evaluated the performance of the Dutch Lipid Clinic Network (DLCN) score in FH patients enrolled in the LIPIGEN study, an Italian integrated network aimed at improving the identification of patients with genetic dyslipidaemias, including FH.Results: The DLCN score was applied on a sample of 1377 adults (mean age 42.9 +/- 14.2 years) with genetic diagnosis of FH, resulting in 28.5% of the sample classified as probable FH and 37.9% as classified definite FH. Among these subjects, 43.4% had at least one missing data out of 8, and about 10.0% had 4 missing data or more. When analyzed based on the type of missing data, a higher percentage of subjects with at least 1 missing data in the clinical history or physical examination was classified as possible FH (DLCN score 3-5). We also found that using real or estimated pre-treatment LDL-C levels may significantly modify the DLCN score.Conclusions: Although the DLCN score is a useful tool for physicians in the diagnosis of FH, it may be limited by the complexity to retrieve all the essential information, suggesting a crucial role of the clinical judgement in the identification of FH subjects

    Refinement of the diagnostic approach for the identification of children and adolescents affected by familial hypercholesterolemia: Evidence from the LIPIGEN study

    Get PDF
    Background and aims: We aimed to describe the limitations of familiar hypercholesterolemia (FH) diagnosis in childhood based on the presence of the typical features of FH, such as physical sings of cholesterol accumulation and personal or family history of premature cardiovascular disease or hypercholesterolemia, comparing their prevalence in the adult and paediatric FH population, and to illustrate how additional information can lead to a more effective diagnosis of FH at a younger age. Methods: From the Italian LIPIGEN cohort, we selected 1188 (≥18 years) and 708 (<18 years) genetically-confirmed heterozygous FH, with no missing personal FH features. The prevalence of personal and familial FH features was compared between the two groups. For a sub-group of the paediatric cohort (N = 374), data about premature coronary heart disease (CHD) in second-degree family members were also included in the evaluation. Results: The lower prevalence of typical FH features in children/adolescents vs adults was confirmed: the prevalence of tendon xanthoma was 2.1% vs 13.1%, and arcus cornealis was present in 1.6% vs 11.2% of the cohorts, respectively. No children presented clinical history of premature CHD or cerebral/peripheral vascular disease compared to 8.8% and 5.6% of adults, respectively. The prevalence of premature CHD in first-degree relatives was significantly higher in adults compared to children/adolescents (38.9% vs 19.7%). In the sub-cohort analysis, a premature CHD event in parents was reported in 63 out of 374 subjects (16.8%), but the percentage increased to 54.0% extending the evaluation also to second-degree relatives. Conclusions: In children, the typical FH features are clearly less informative than in adults. A more thorough data collection, adding information about second-degree relatives, could improve the diagnosis of FH at younger age

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life

    Familial combined hypolipidemia: Angiopoietin-like protein-3 deficiency

    No full text
    Purpose of review Angiopoietin-like protein-3 (ANGPTL3) is emerging as a key player in lipoprotein transport with an expanding role on fatty acid and glucose metabolism. Its deficiency is associated with a favorable metabolic profile. The present review will highlight the recent understanding of metabolic and cardiovascular consequences of ANGPTL3 inactivation by considering both genetic and pharmacological investigations. Recent findings Experimental studies have further illustrated the complex interplay between ANGPTL3 and ANGPTL4-8 in orchestrating lipid transport in different nutritional status. Individuals with familial combined hypolipidemia due to homozygous loss-of-function mutations in ANGPTL3 gene showed improved metabolism of triglyceride-rich lipoproteins during fasting and postprandial state and increased fatty acid oxidation and insulin sensitivity. Moreover, mendelian randomizations studies demonstrated that partial ANGPTL3 deficiency associates with reduced risk of atherosclerotic cardiovascular events and, eventually, diabetes mellitus. Finally, inactivation of ANGPTL3, using either a specific mAb or antisense oligonucleotide, was reported to reduce plasma levels of atherogenic lipoprotein in humans and improve hepatic fat infiltration in animal models. Summary Human and animal studies have further dissected the complex role of ANGPTL3 in the regulation of energy substrate metabolism. Moreover, genetic and pharmacological investigations have convincingly indicated that the inactivation of ANGPTL3 may be a very promising strategy to treat atherogenic metabolic disorders

    The interplay between angiopoietin-like proteins and adipose tissue: Another piece of the relationship between adiposopathy and cardiometabolic diseases?

    No full text
    Angiopoietin-like proteins, namely ANGPTL3-4-8, are known as regulators of lipid metabolism. However, recent evidence points towards their involvement in the regulation of adipose tissue function. Alteration of adipose tissue functions (also called adiposopathy) is considered the main inducer of metabolic syndrome (MS) and its related complications. In this review, we intended to analyze available evidence derived from experimental and human investigations highlighting the contribution of ANGPTLs in the regulation of adipocyte metabolism, as well as their potential role in common cardiometabolic alterations associated with adiposopathy. We finally propose a model of ANGPTLs-based adipose tissue dysfunction, possibly linking abnormalities in the angiopoietins to the induction of adiposopathy and its related disorders

    Metabolic Consequences of Adipose Trigliceride Lipase Deficiency in Humans: An In Vivo Study in Patients with Neutral Lipid Storage Disease with Myopathy

    No full text
    CONTEXT: The role of adipose triglyceride lipase (ATGL) in intermediate substrates metabolism has not been fully elucidated in humans. OBJECTIVE: Our objective was to evaluate the consequences of ATGL deficiency on body fat distribution, insulin sensitivity, fatty acids metabolism, and energy substrate utilization. DESIGN AND SETTING: Body composition and organ fat content were measured by bioimpedance and (1)H nuclear magnetic resonance spectroscopy; heart glucose metabolism by [(18)F]deoxyglucose positron emission tomography and insulin sensitivity and β-cell function by oral glucose tolerance and 2-step euglycemic-hyperinsulinemic clamp. Lipolysis ([(2)H5]glycerol turnover) and indirect calorimetry were evaluated at fasting, after oral glucose load, during the clamp, and also during an iv epinephrine infusion. These metabolic investigations were carried out during hospitalization. PATIENTS: Three patients affected by neutral lipid storage disease with myopathy (NLSDM) due to homozygosity for loss-of-function mutations in the ATGL gene and 6 sex-, age-, and body mass index-matched controls were studied. RESULTS: As expected, NLSDM patients showed diffuse, although heterogeneous, fat infiltration in skeletal muscles associated with increased visceral fat. Although heart and liver were variably affected, fat content in the pancreas was increased in all patients. Compared with healthy controls, NLSDM patients showed impaired insulin response to glucose possibly related to the severe pancreatic steatosis, preserved whole-body insulin sensitivity, and a shift toward glucose metabolism in the heart. Fasting nonesterified fatty acid concentrations as well as basal lipolytic rates and the antilipolytic effect of insulin were normal in NLSDM patients, whereas the lipolytic effect of norepinephrine was impaired. Finally, no significant abnormality in the respiratory quotient was noted in NLSDM patients. CONCLUSIONS: In humans, ATGL has a remarkable effect on cellular lipid droplet handling, and its lack causes both perivisceral, skeletal muscle, and pancreas fat accumulation; in contrast, the impact on whole-body insulin sensitivity and fatty acid metabolism is minor

    Evolving trend in the management of heterozygous familial hypercholesterolemia in Italy: a retrospective, single center, observational study

    No full text
    Background and aims: The effective reduction of LDL-C in patients with heterozygous familial hypercholesterolemia (HeFH) is crucial to reduce their increased cardiovascular risk. Diagnostic and therapeutic (PCSK9 inhibitors) tools to manage HeFH improved in recent years. However, the impact of these progresses in ameliorating the contemporary real-world care of these patients remains to be determined. Aim of this study was to assess the evolution of treatments and LDL-C control in a cohort of HeFH patients in Italy. Methods and results: Four hundred six clinically diagnosed HeFH followed in a single, tertiary lipid centre were included in this survey. Data on lipid levels and medications were collected at baseline and during a median 3-year follow-up. At baseline, 19.8% of patients were receiving conventional high-potency lipid lowering therapies (LLT) and this percentage increased up to 50.8% at last visit. The knowledge of results of molecular diagnosis was associated with a significant increase in treatment intensity and LDL-C lowering. Nevertheless, the new LDL-C target (<70 mg/dl) was achieved only in 3.6% of HeFH patients under conventional LLTs and this proportion remained low (2.9%) also in those exposed to maximal conventional LLT. In 51 patients prescribed with PCSK9 inhibitors, 64.6% and 62.1% reached LDL-C<70 mg/dl at 3- and 12-month follow-up, respectively. Conclusions: Although treatments of HeFH improved over time, LDL-C target achievement with conventional LLT remains poor, mainly among women. The use of molecular diagnosis and even more the prescription of PCSK9i may improve LDL-C control in these patients
    corecore