279 research outputs found

    Recent Advances in Morphological Cell Image Analysis

    Get PDF
    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed

    A sensitive electrochemical sensor based on polypyrrole/electrochemically reduced graphene oxide for the determination of imidacloprid

    Get PDF
    The glassy carbon electrode (GCE) was modified by electrochemically reduced graphene oxide (ERGO) and polypyrrole (PPy) prepared by simple cyclic voltammetry (CV) electropoly­merization. The PPy/ERGO modified electrode (PPy/ERGO/GCE) was used as a platform of electrochemical sensor to detect imidacloprid (IMI) insecticide. CV and differential pulse voltammetry (DPV) were chosen as the methods to investigate of the electrochemical behavior of IMI on PPy/ERGO/GCE surface. Scanning electron microscopy (SEM) and Raman spectra were utilized to describe the morphology and structure of the modified electrode. Experimental parameters were optimized, such as the number of polymerization cycles, scan rate and the pH value of electrolyte. Under the optimized conditions, when the concentration of IMI was in the range of 1-10 μM and 10-60 μM, the increase of reduction peak current was linear with the concentration of IMI, and the low detection limit was found to be 0.18 μM (S/N = 3). Results showed that PPy/ERGO/GCE demonstrated satisfactory reproducibility and stability, and has great potential in actual sample testing

    Improving QA Generalization by Concurrent Modeling of Multiple Biases

    Get PDF
    Existing NLP datasets contain various biases that models can easily exploit to achieve high performances on the corresponding evaluation sets. However, focusing on dataset-specific biases limits their ability to learn more generalizable knowledge about the task from more general data patterns. In this paper, we investigate the impact of debiasing methods for improving generalization and propose a general framework for improving the performance on both in-domain and out-of-domain datasets by concurrent modeling of multiple biases in the training data. Our framework weights each example based on the biases it contains and the strength of those biases in the training data. It then uses these weights in the training objective so that the model relies less on examples with high bias weights. We extensively evaluate our framework on extractive question answering with training data from various domains with multiple biases of different strengths. We perform the evaluations in two different settings, in which the model is trained on a single domain or multiple domains simultaneously, and show its effectiveness in both settings compared to state-of-the-art debiasing methods

    Self-Adaptive Artificial Bee Colony for Function Optimization

    Get PDF
    Artificial bee colony (ABC) is a novel population-based optimization method, having the advantage of less control parameters, being easy to implement, and having strong global optimization ability. However, ABC algorithm has some shortcomings concerning its position-updated equation, which is skilled in global search and bad at local search. In order to coordinate the ability of global and local search, we first propose a self-adaptive ABC algorithm (denoted as SABC) in which an improved position-updated equation is used to guide the search of new candidate individuals. In addition, good-point-set approach is introduced to produce the initial population and scout bees. The proposed SABC is tested on 12 well-known problems. The simulation results demonstrate that the proposed SABC algorithm has better search ability with other several ABC variants

    A targetable acid-responsive micellar system for signal activation based high performance surgical resolution of tumors

    Get PDF
    973 program [2013CB93390]; NSF China [21272196, 21072162, 30830092, 30921005, 91029304, 81061160512]; PCSIRT; Fundamental Research Funds for the Central Universities [2011121020]Tumor-reporting probes are valuable to guide surgical resection of tumor foci elusive to visual inspection. As tumors display distinct arrays of lectins, we herein report the construction and screening of a panel of glycan-displaying smart micelles for tumor illumination in mice. These micelles consist of cores of rhodamine-sultam (RST) responsive to lysosomal acidity and a corona of poly[styrene-alter-(maleic acid)] glycosylated with D-glucosamine, D-mannosamine or D-galactosamine. These nanoscale micelles are nonfluorescent extracellularly and become luminescent within acidic lysosomes, enabling optical tracking of tumor endocytosis of the micelles. In vivo screening revealed high-efficiency uptake and fluorescence activation of galactosylated micelles (RST@P-Gal) by subcutaneous tumor and disseminated liver tumor foci with diameters of 0.1-10 mm, which is significantly below minimal residual cancer (a minimum of 1 cm clearance). This system is readily adapted to illuminate different tumors by expanding the diversity of glycans on the shell. Given the robustness and high performance of this system, lectin-targeted responsive micelles are attractive for diagnosis or surgical ablation of tumors

    A novel BRDT inhibitor NHWD870 shows potential as a male contraceptive in mice

    Get PDF
    Small molecule inhibitors of the bromodomain and extraterminal domain (BET) family proteins have emerged as a promising option for not only the treatment of multiple cancers but also for disturbing the process of sperm maturation with potential for use as a viable contraceptive target. In this paper, we report a new generation of BET family inhibitor, NHWD870, that provide a complete and reversible contraceptive effect in mice which is stronger than that of JQ1 and its synthesized derivatives. This study is hoped to lead to the clinical trial eventually
    corecore