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Abstract 23 

Phosphatase PP2A expression levels are positively correlated to the clinical severity of systemic lupus 24 

erythematosus (SLE) and IL17A cytokine overproduction, indicating a potential role of PP2A in 25 

controlling TH17 differentiation and inflammation. By generating a mouse strain with ablation of the 26 

catalytic subunit α of PP2A in peripheral mature T cells (PP2A cKO), we demonstrate that the PP2A 27 

complex is essential for TH17 differentiation. These PP2A cKO mice had reduced TH17 cell numbers 28 

and less severe disease in an experimental autoimmune encephalomyelitis (EAE) model. PP2A 29 

deficiency also ablated C-terminal phosphorylation of SMAD2 but increased C-terminal 30 

phosphorylation of SMAD3. By regulating the activity of RORγt via binding, the changes in the 31 

phosphorylation status of these R-SMADs reduced Il17a gene transcription. Finally, PP2A inhibitors 32 

showed similar effects on TH17 cells as were observed in PP2A cKO mice, i.e., decreased TH17 33 

differentiation and relative protection of mice from EAE. Taken together, these data demonstrate that 34 

phosphatase PP2A is essential for TH17 differentiation, and that inhibition of PP2A could be a possible 35 

therapeutic approach to controlling TH17-driven autoimmune diseases. 36 

Significance statement 37 

By using a gene knockout that leads to T-cell specific deletion, we reveal the essential role of Ser/Thr 38 

phosphatase PP2A in TH17 differentiation. We also show that this works through the regulation of 39 

SMAD2/3 phosphorylation status, which elucidates molecular pathways by which PP2A modulates the 40 

expression of TH17 phenotypes. This finding extends our understanding of the close relationship 41 

between PP2A overexpression and inflammatory disease. PP2A is the first Ser/Thr phosphatase shown 42 

to be capable of controlling TH17 differentiation via modulating R-SMADs activity. We also 43 

demonstrate the translational potential of these findings by showing a therapeutic effect of PP2A 44 

inhibitors in controlling autoimmune disease in the EAE model. 45 

Keywords：TH17，PP2A，TGFβ 46 

47 
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/body Introduction. 48 

T-helper type 17 (TH17) cells, a subset of CD4+ T cells defined by IL17, IL22 and IL21 production, are 49 

essential for control and clearance of extracellular bacterial and fungi (1, 2). However, excessive TH17 50 

responses are involved in chronic inflammation and development of many human autoimmune diseases 51 

(3). Upon encountering antigen in the context of a local cytokine milieu including transforming growth 52 

factor β (TGFβ) and IL6, naïve CD4+ T cells undergo differentiation into effective TH17 cells. TGFβ is 53 

the principal, essential factor promoting the differentiation of TH17 cells (4, 5).  54 

Through two related transmembrane Ser/Thr kinase receptors, TGFβ induces Ser/Thr signal cascades in 55 

activated T cells. Recent work including work from our lab has revealed the regulatory roles of some 56 

other Ser/Thr kinases in this process. For example, both MEKK2/3 and MINK1 suppress TH17 57 

differentiation through direct phosphorylation of the TGFβ signaling components SMAD2 and SMAD3 58 

(6, 7). Precise regulation of SMAD2/3 Ser/Thr phosphorylation status is thus important in driving TH17 59 

differentiation (6-8). Dephosphorylation of SMAD2/3 is equally critical in this process but the specific 60 

phosphatases that catalyze SMAD2/3 dephosphorylation remain unknown.  61 

As one of the major Ser/Thr phosphatases in eukaryotes, phosphatase PP2A is critical for many cellular 62 

functions including cell survival, proliferation, activation and differentiation (9). It has been reported 63 

that elevated PP2A expression levels are linked to the upregulation of IL17A production by CD4+ T 64 

cells in human systemic lupus erythematosus patients (10). Studies in the PP2Ac transgenic mouse 65 

model also demonstrated the relationship and mechanism linking of PP2A and Il17-dependent 66 

immunopathology (11, 12). PP2A is composed of three polypeptide chains, the structural A, the 67 

regulatory B and the catalytic C subunits (13). The heterodimer of the A subunit and the C subunit 68 

(PP2AA-PP2AC) forms the PP2A core enzyme that associates with one regulatory B subunit, thus 69 

determining the substrate specificity of the holoenzyme complex (13).  70 

In TGFβ signaling, two related regulatory B subunits, Bα (Ppp2r2a) and Bδ (Ppp2r2d), opposingly 71 

modulate TGFβ/Activin/Nodal signaling (14), while carboxy terminal phosphorylation of MAD (the 72 

SMAD homolog protein in Drosophila) is negatively regulated by the PP2A inhibitor Okadaic Acid 73 

(15). By analogy, these observations suggest that PP2A might be a Ser/Thr phosphorylation modulator 74 

involved in controlling TH17 differentiation. 75 

Here, we present data showing that TH17 cell polarization was largely impaired when Ppp2ca was 76 
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ablated in mature T cells and rendered resistance towards MOG-induced experimental autoimmune 77 

encephalomyelitis (EAE). We also show that PP2A knockout leads to altered activation of R-SMADs 78 

(specifically decreasing SMAD2 activation and increasing SMAD3 activation). This synergistically 79 

inhibited RORγt mediated Il17a transcription. This work thus reveals specific role of PP2A in 80 

regulating the canonical TGFβ-R-SMAD-RORγt signaling process during TH17 differentiation and 81 

indicates a possible therapeutic approach for controlling TH17 driven autoimmune diseases via 82 

inhibition of PP2A.  83 

84 
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Results. 85 

Normal T cell development in PP2A cKO mice. To explore the function of PP2A in peripheral T cells, 86 

we deleted the dominant PP2A Cα isoform of PP2A catalytic subunit (PP2Ac) in T cell by crossing 87 

dis-Lck (dLck) Cre with Ppp2cafl/fl mice (in which exons 3-5 of Ppp2ca are loxP flanked) (16) to 88 

generate Ppp2cafl/fl dLck-Cre (termed PP2A cKO mice) and Ppp2cafl/+ dLck-Cre or Ppp2ca+/+ 89 

dLck-Cre mice (collectively called PP2A WT mice here) (SI Appendix, Fig. S1A and B). The dLck-Cre 90 

was driven by the distal promoter of the lymphocyte protein tyrosine kinase (Lck) gene, enabling 91 

investigation of the Ppp2ca deletion after positive selection in T cells (17).  92 

To assess deletion efficiency, Ppp2ca mRNA and protein levels were measured and showed clear 93 

reduction in peripheral T cells in PP2A cKO mice, while remaining normal in thymic subsets and 94 

splenic B cells (SI Appendix, Fig. S1C and D). The catalytic subunit of PP2A has two isoforms, Cα and 95 

Cβ (encoded by Ppp2ca and Ppp2cb respectively). Notably we didn’t observe compensatory 96 

overexpression of Ppp2cb (SI Appendix, Fig. S1C). PP2A activity in cKO CD4+ T cells was reduced to 97 

half of that measured in WT controls (SI Appendix, Fig. S1E). 98 

Analysis of the numbers and frequencies of different T cell subsets in these mice showed that cKO 99 

mice exhibited normal T cell development in thymus (SI Appendix, Fig. S2A-C) as well as in peripheral 100 

lymphoid organs (SI Appendix, Fig. S2A, D and E). The proportions of naïve/effective T cells in spleen 101 

and mesenteric lymph nodes (MLN) were also similar between WT and cKO littermates (SI Appendix, 102 

Fig. S2F and G). The normal development of peripheral lymphocytes in PP2A cKO mice allowed 103 

further investigation of the role of PP2A in T cell differentiation.  104 

TH17 cell numbers are reduced in PP2A cKO mice. To clarify whether PP2A is involved in T helper 105 

cell lineage commitment, we analyzed the populations of T helper subsets in vivo. Interestingly, CD4+ 106 

T cells from PP2A cKO mice only contained half the number of TH17 cells comparing to their WT 107 

littermates (SI Appendix, Fig. S3A and B), while the numbers of TH1 and Treg CD4+ T cells were not 108 

affected in the peripheral lymphoid organs (SI Appendix, Fig. S3A, C, D and F). The frequency of 109 

Foxp3+ regulatory T cells in the thymus was also comparable between PP2A WT and cKO mice (SI 110 

Appendix, Fig. S3E and F). Similarly, subsets analysis of the lamina propria also showed a consistent 111 

reduction of TH17 cells (SI Appendix, Fig. S3G and I). These data demonstrate that PP2A is involved in 112 

maintaining TH17 cell composition, while other T cell subsets, including Treg and TH1, appear 113 

unaffected.  114 
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PP2A deletion impairs TH17 differentiation in vitro. To investigate whether reduced levels of TH17 115 

cells in PP2A cKO mice result from impaired TH17 differentiation, we sorted naïve CD4+ T cells from 116 

both WT and cKO cells and polarized them under TH1, TH2, TH17 and iTreg conditions to compare 117 

their differentiation efficiencies. The results showed that only the generation of TH17 cells notably 118 

declined with the PP2A deficiency, while other T helper subsets were not affected (Fig. 1A and B and 119 

SI Appendix, Fig. S4A and B).The expression levels of Ppp2ca mRNA and PP2A Cα protein were more 120 

abundant in TH17 cells than in other T helper subsets (SI Appendix, Fig. S4G and H). 121 

p-PP2Ac (Y307) levels, a negative indicator for PP2A activity, are lower in TH17 and TH1 than in the 122 

other subsets, indicating higher PP2A activity in these two subsets (SI Appendix, Fig. S4I). Cytokine 123 

production showed similar results, confirming that PP2A deficiency specifically reduced TH17 124 

differentiation (Fig. 1C and SI Appendix, Fig. S4C). We further tested the expression of several key 125 

TH17 signature genes and found notably decreased Il17a and Il17f expression and slightly reduced 126 

expression of Rora and Il21, while the expression of Rorc, Il22 and Il23r were not significantly 127 

affected (Fig. 1D). The alteration of the expression pattern of TH17 signature genes (including Il17a 128 

and Il17f) induced by PP2A deficiency was also confirmed by an RNAseq analysis (SI Appendix, Fig. 129 

S5A and B and Dataset 1-3).  130 

The proliferation capacity of WT and cKO T cells was measured under TH17 conditions and were 131 

comparable 2 and 5 days after stimulation (SI Appendix, Fig. S4D). Upon PI and Annexin staining, WT 132 

and cKO cells showed comparable apoptotic rates (SI Appendix, Fig. S4E). Thus, reduced IL17A+ 133 

CD4+ T cell levels and IL17A production were not due to either impaired proliferation or increased 134 

apoptosis in cKO cells. Furthermore, we did not observe an increased portion of IFNγ+ or Foxp3+ CD4+ 135 

T cells in cKO T cells under TH17 conditions, which rules out the likelihood of TH17 cells converting to 136 

other cell subsets in these circumstances (Fig. 1A and SI Appendix, Fig. S4F). These findings therefore 137 

demonstrate a T-cell intrinsic impairment of the TH17 polarization program upon PP2A deficiency 138 

which is independent of proliferation, apoptosis or subset conversion. 139 

Reduced severity of EAE in mice with PP2A deficiency. Given the required role of PP2A in inducing 140 

normal TH17 polarization, the question of whether defective TH17 PP2A cKO cells also influence 141 

TH17-driven autoimmune disease was investigated in vivo using an experimental autoimmune 142 

encephalomyelitis (EAE) model. We therefore immunized PP2A WT and cKO mice with myelin 143 
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oligodendrocyte glycoprotein peptide of amino acids 35–55 (MOG35-55) to induce EAE.  144 

Clinical scoring showed that PP2A deficiency alleviated symptoms of autoimmunity (Fig. 2A). 145 

Histological examination showed significantly less mononuclear cell infiltration and demyelination in 146 

the cerebral and spinal cord of the cKO mice (Fig. 2B). Inflammatory cell infiltration into the central 147 

nervous system (CNS) was also greatly diminished in the cKO group (Fig. 2C). Although the 148 

proportion of CD4+ T cells was unchanged in the CNS of cKO mice, the total numbers of infiltrating 149 

CD4+ and CD8+ cells were significantly reduced (Fig. 2C). IL17A producing CD4+ T cells were also 150 

present in significantly decreased numbers in both the CNS and draining lymph nodes (DLN), whereas 151 

the frequencies of IFNγ producing CD4+ T cells were unchanged. (Fig. 2D-F). These data indicate that 152 

reduced IL17A production upon PP2A cKO results in less severe MOG-induced CNS inflammation. 153 

Indeed, in vitro MOG recall analysis also showed reduced IL17A production by PP2A cKO splenocytes, 154 

while IFNγ production was unaffected (Fig. 2G). Intriguingly, Foxp3+ CD4+ T cell proportions were 155 

also reduced in the CNS but not in the DLN (Fig. 2D-F). This might be explained by markedly milder 156 

inflammation in the CNS which consequently recruited less regulatory cells. PP2A cKO mice are thus 157 

resistant to EAE and this is strongly correlated with an observed significant reduction in TH17 cell 158 

induction. 159 

Intact TCR and IL6 signaling in PP2A cKO CD4+ T cells. We next investigated how PP2A 160 

deficiency affected intracellular signaling in controlling TH17 cell differentiation. Intact TCR signaling 161 

is indispensable for TH17 commitment (18). However, our results showed that PP2A deficiency did not 162 

affect normal CD69 upregulation (SI Appendix, Fig. S6A), cell proliferation (SI Appendix, Fig. S6B) or 163 

production of IL2 or IFNγ (SI Appendix, Fig. S6C) following anti-CD3 stimulation. Interestingly, 164 

Western Blot analysis showed upregulation of pERK and pP38 in PP2A deficient cells (SI Appendix, 165 

Fig. S6D) and these two pathways are known to play opposing roles in TH17 differentiation. Inhibition 166 

of MEK-ERK signaling enhances TH17 differentiation while activation of P38 is critical for optimal 167 

TH17 polarization (19-21). We found that use of an MEK inhibitor (inhibiting ERK, U0126) failed to 168 

restore TH17 differentiation due to PP2A deficiency (SI Appendix, Fig. S6E). Thus, subtle changes in 169 

MAPKs activation are not correlated with decreased TH17 differentiation due to PP2A deficiency. 170 

PP2A overexpression has been previously reported to upregulate Il17a gene transcription by enhancing 171 

IRF4 activity (11). However, the observed mRNA, protein and IRF4 activity did not support 172 
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involvement of IRF4 in leading to diminished Il17a transcription (SI Appendix, Fig. S5C-E). 173 

By using the PP2A inhibitor OA, previous work has suggested a possible regulatory role of PP2A in 174 

regulating IL6 signaling, including promoting the stability of IL6 receptor gp130 (CD130) (22) and 175 

modulating STAT3 phosphorylation (23). However, our experiments did not show any alterations in 176 

either IL6 receptor expression (SI Appendix, Fig. S7A and B) or STAT3 phosphorylation (Y705 and 177 

S727) after IL6 stimulation in cKO T cells (SI Appendix, Fig. S7C) thus excluding the possibility that 178 

the inhibition of TH17 differentiation upon PP2A deletion is due to TCR or IL6 signaling changes. 179 

Differential modulation of SMAD2/3 activity by PP2A deficiency restrains TH17 differentiation. 180 

In TGFβ pathway, TGFβ RI and RII, which are reported to be opposingly regulated by two different 181 

PP2A B subunits (14), were similarly expressed in PP2A cKO T cells (Fig. 3A and B). Meanwhile, we 182 

found that pSMAD2 (Ser465/467) level was decreased but pSMAD3 (Ser423/425) level was increased 183 

after TGFβ stimulation in PP2A cKO cells (Fig. 3C). In accordance, SMAD2 hyper-phosphorylation 184 

and SMAD3 under-phosphorylation was observed in PP2A Cα overexpressed 293FT cells after TGFE 185 

stimulation (SI Appendix, Fig. S8A and B). We next performed the Co-IP assay in Jurkat cells to 186 

explore the binding of R-SMADs to PP2Ac. We found that PP2Ac can form stable complex with 187 

SMAD2 and SMAD3, which does not depend on either TCR or TGFE stimulation (SI Appendix, Fig. 188 

S8C and D).  189 

In addition, in vitro dephosphorylation assay showed that PP2A can directly dephosphorylate pSMAD3 190 

(SI Appendix, Fig. S8E-G). Studies on SMAD2 and SMAD3 conditional knockout mice have revealed 191 

the opposite functions of these two molecules in inducing TH17 cells (24-27). We thus suspected that 192 

the altered activation of SMAD2/3 in PP2A cKO cells might serve as the major contributor towards 193 

decreased Il17a transcription. Indeed, when we expressed different activation forms of SMAD2/3 (WT, 194 

dominant negative form 2SA, constitutive active mutants 2SD) in naïve CD4+ T cells and analyzed cell 195 

differentiation in TH17 condition, the results clearly showed that insufficient activation of SMAD2 196 

caused defective TH17 differentiation, while constitutively activated SMAD2 promoted optimal TH17 197 

priming (Fig. 3D and E). On the contrary, ectopic expression of SMAD3 dramatically repressed TH17 198 

polarization. Interestingly, a SMAD3-2SA mutant also showed inhibitory activity to TH17 polarization 199 

although to a lesser degree (Fig. 3F and G), indicating that suppression of TH17 differentiation by 200 

SMAD3 depends on both SMAD3 activation and on its overall expression level. To rule out alterations 201 
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in iTreg cell skewing condition in the previous experiments, we also used a series of TGFβ doses for 202 

suboptimal iTreg priming but observed no difference between the PP2A cKO and WT groups (SI 203 

Appendix, Fig. S7D).  204 

Changes in SMAD2/3 activity synergistically downregulate Il17a transcription via reducing 205 

RORJt activity. We next asked how the shift of SMAD2/3 phosphorylation status affected Il17a 206 

transcription. We found that the protein expression levels of RORγt and RORα were not different in 207 

PP2A WT and cKO TH17 cells (Fig. 4A and B). More importantly, retrovirus-mediated ectopic 208 

expression of RORγt could not completely restore TH17 potentiation in cKO T cells (Fig. 4C and D). 209 

These data supported the hypothesis that PP2A controlled TH17 differentiation is independent of RORγt 210 

protein expression. To address whether overactivation of SMAD3 and insufficient activation of 211 

SMAD2 could work cooperatively to suppress RORγt activity, ChIP analysis of RORγt occupancy of 212 

Il17a gene region was carried out. The result confirmed our hypothesis that with equal RORγt 213 

expression, its activity was largely reduced due to PP2A deficiency (Fig. 4E). Phosphorylation changes 214 

of SMAD2/3 affected their binding ability with RORγt. In cKO TH17 cells, RORγt binded more 215 

SMAD3 and less SMAD2 than observed in WT TH17 cells (Fig. 4F).  216 

Different activation forms of SMAD2/3 were then co-transfected with RORJt in the 293FT cell line.  217 

These experiments showed that the constitutively active SMAD2/3 preferentially interacts with RORJt 218 

over the inactive forms, and that SMAD3 is more accessible to bind RORγt than SMAD2 (Fig. 4G).  219 

These results suggest that phosphorylation changes in SMAD2/3 may inhibit RORγt activity by 220 

affecting the capacity of SMAD2/3 to form complexes with RORγt. Based on this hypothesis, we 221 

performed rescue experiments with SMAD2-2SD transfection or SMAD3 knockdown. Both 222 

approaches significantly improved TH17 polarization in cKO naïve CD4+ T cells (Fig. 4H-K). SMAD3 223 

knockdown efficiency by siRNA was verified by Western Blot and RT-PCR (SI Appendix, Fig. S9A and 224 

B). 225 

PP2A inhibitors phenocopy phosphorylation changes of SMAD2/3 and restrain TH17 polarization 226 

in vitro. We observed that administration of PP2A inhibitors in 293FT cells phenocopied the SMAD2/3 227 

activation changes in a dose dependent manner (Fig. 5A). Further, the PP2A inhibitor Cantharidin 228 

(CAN) restrained RORγt mediated Il17a promoter activation (Fig. 5B). More importantly, when 229 

administrating PP2A inhibitor Cantharidin in TH17 culture medium, we also observed a dose dependent 230 
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inhibitory role at a concentration that had no effect on cell proliferation (Fig. 5C-E). Another two PP2A 231 

inhibitors OA and Fostriecin (FOS) also showed similar effects upon TH17 differentiation (SI Appendix, 232 

Fig. S10A-E). In addition, PP2A cKO T cells did not display suppression effects by PP2A inhibitors, 233 

ruling out the off-target effects might result in TH17 depression (Fig. 5F and SI Appendix, Fig. S10F). 234 

A PP2A inhibitor protects mice from EAE. We examined whether Cantharidin can block TH17 cell 235 

mediated inflammation in EAE. A significant reduction of disease severity was observed in Cantharidin 236 

treated PP2A WT mice compared to PBS treated WT mice (Fig. 6A). Histological examination also 237 

showed significantly less mononuclear cells infiltration and demyelination in the spinal cord of the 238 

Cantharidin treated WT mice (Fig. 6B). Meanwhile, there was no observable aggravation of clinical 239 

symptoms by applying Cantharidin in PP2A cKO mice, suggesting that Cantharidin dose was within a 240 

safe range (Fig. 6A). Fewer mononuclear lymphocytes and CD4+ T cells infiltrated into the CNS of 241 

Cantharidin treated WT mice than of the PBS WT group at the onset or peak of EAE, while the CD8+ 242 

and myeloid population was not significantly changed (Fig. 6C-D). Additionally, the ratio of TH17 cells 243 

was lower in Cantharidin treated WT mice than in PBS treated WT mice (p=0.08) (Fig. 6E). The 244 

number of infiltrated TH17 cells was also significantly lower in the CNS. Treg cells and IFNJ 245 

producing cells were slightly decreased (Fig. 6F). Furthermore, Cantharidin treatment in PP2A cKO 246 

groups did not alter the number of inflammatory lymphocytes infiltrated into CNS (Fig. 6G-H). 247 

Cantharidin treated cKO groups showed no effects to EAE symptoms, suggesting the specific targeting 248 

of Cantharidin to PP2A in T cells in this experimental setting. However, whether Cantharidin can also 249 

act on other cells and contribute to the therapeutic effects is unclear. Collectively, data above showed 250 

that PP2A inhibitor Cantharidin can limit EAE development principally by reducing TH17 251 

differentiation. 252 

253 
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Discussion. 254 

By using peripheral T cell specific KO mice, we have established the positive regulatory role of PP2A 255 

in TH17 differentiation as well as in inflammatory autoimmune diseases. We have also proved that 256 

underactivated SMAD2 and overactivated SMAD3 downstream of TGFβ signaling collectively 257 

reduced RORγt mediated Il17a transcription in PP2A cKO mice. PP2A inhibitors also reduced TH17 258 

polarization, indicating a promising therapeutic avenue for treating TH17 cell mediated autoimmune 259 

diseases.  260 

PP2A is one of the most abundant phosphatases and crucial for many key cellular events. A total 261 

knockout of the PP2A catalytic subunit a in mice is lethal (16). To our surprise, PP2A deficiency did 262 

not lead to fundamental changes in basic processes such as cell survival and proliferation. This is either 263 

because of the residual PP2A expression in our cKO mice or the stage and cell specific functions of 264 

PP2A.  265 

As shown by RNAseq and RT-PCR analysis, the transcriptional changes of TH17 signature genes 266 

induced in PP2A cKO were limited. Obvious changes were observed in Il17a and Il17f, but not in Rorc. 267 

Expression of RORγt was intact, which exclude the possibility that PP2A is involved in the pathways 268 

leading to RORγt induction. Therefore, intracellular signaling events downstream of RORγt and closely 269 

related to Il17a transcription might be the candidate targets of PP2A mediated inhibition of TH17 270 

differentiation.  271 

SMAD2, SMAD3 and SMAD4 are all critical for TGFβ signaling and participate in TH17 or iTreg cell 272 

priming to induce balanced expression of Foxp3 and RORJt (24-26, 28-30). It is intriguing that 273 

SMAD2 knockout mice show reduced TH17 cell differentiation and ameliorated EAE, while a 274 

deficiency in SMAD3 has the opposite effects (24, 26-28). Furthermore, overexpression of SMAD2 275 

and RORJt augments the differentiation of TH17 cells. However, SMAD3 binds to RORJt in Co-IP 276 

experiments and decreases its transcriptional activity (26). Moreover, R-SMAD activation is mainly via 277 

the phosphorylation of the C-terminal SSXS motif, which is critical for R-SMAD function. The active 278 

form of SMAD3 might enhance its binding affinity with RORγt and it is known that SMAD3 can 279 

compete with SMAD2 for binding with RORγt (27). These results suggest that active SMAD2 plays a 280 

positive role and active SMAD3 plays a negative role in TH17 cell differentiation likely via dynamic 281 

interaction with RORJt (26, 27).  282 

Our study confirmed that altered SMAD2/3 activation by PP2A affects TH17 differentiation, resulting 283 
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in decreased Il17a transcription via forming complex with RORγt and reducing its activity and thus 284 

affecting TH17 differentiation. Importantly, this is the first study to identify PP2A as the critical 285 

phosphatase responsible for Ser/The dephosphorylation on R-SMADs and necessary for efficient TH17 286 

differentiation.  287 

It is important to know the precise dephosphorylation site on R-SMAD and the responsible kinases. 288 

Our previous work has elucidated the importance of threonine residue T324 in the α-helix 1 region of 289 

SMAD2 for regulation during TH17 differentiation (6). It is thus likely that PP2A upregulates SMAD2 290 

C-terminal phosphorylation via modulating MINK1 activity. However, the function of PP2A appears to 291 

be broader and more dominant than this single phosphorylation event, since we also observed increased 292 

SMAD3 phosphorylation in cKO CD4+ T cells, which also contributes to deceased TH17 differentiation. 293 

This observation is in accordance with a previous finding that the PP2A structural subunit PR65 could 294 

interact with SMAD3 (31).  295 

It is also likely that PP2A directly regulates the phosphorylation status of RORJt. Recent study showed 296 

that two functional phosphorylation sites identified on RORJt played opposite roles in TH17 297 

polarization. IKKα was discovered as upper stream regulator for the phosphorylation change (32). 298 

Whether PP2A participates in the interaction with IKKα or RORJt in regulating RORJt activity remains 299 

to be elucidated. 300 

The classical TGFβ pathway is also critical for iTreg differentiation (33). SMAD2 and SMAD3 double 301 

knockout mice showed dramatic loss of Foxp3 induction (28). Then why is iTreg differentiation not 302 

affected by PP2A deficiency? It is most likely because of the redundant roles of SMAD2 and SMAD3 303 

in TGFβ induced iTreg plasticity (28). Overactivated SMAD3 may compensate for insufficient 304 

activation of SMAD2 in Foxp3 induction. In a recent study, PP2A was reported to be indispensable for 305 

the maintenance of the suppressive function of Treg cells via regulating the activity of the mTORC1 306 

complex. Specific ablation of PP2A in Treg cells by Foxp3-YFP-Cre leads to autoimmunity with 307 

similar clinical features of scurfy mice (34). We also observed the same Treg phenotype in dLck-driven 308 

PP2A cKO mice, but the overall outcome of PP2A defect in peripheral T cells is dominated by TH17 309 

differentiation impairment, which is demonstrated by their reduced susceptibility to autoimmune 310 

diseases induction. 311 

Finally, in addition of finding the importance of PP2A to TH17 differentiation, we demonstrated the 312 
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translational potential of this pathway by showing the therapeutic effect of PP2A inhibitor in 313 

controlling autoimmune diseases in the EAE model. 314 

315 
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Materials and Methods. 316 

Mice. Ppp2ca flowed mice were provided by X. Gao, Model Animal Research Center of Nanjing University. Mice with 317 

Cre recombinase driven by the distal promoter of the gene encoding the kinase Lck were bought from the Jackson Laboratory. 318 

The experimental protocols were approved by the Review Committee of Zhejiang University School of Medicine and followed 319 

institutional guidelines.  320 

EAE Induction. EAE was induced as described previously (35). Briefly, mice aged 6-8 weeks were immunized with 200 mg 321 

MOG35-55 (Sangon, MEVGWYRSPFSRVVHLYRNGK) in an equal amount of Complete Freund’s Adjuvant (Chondrex, Inc.) and 322 

received 200 ng pertussis toxin (List Biochemicals) intravenously on days 0 and 2 post-induction. Clinical evaluation was 323 

assigned daily using a 5-point scale: 1, flaccid tail; 2, impaired righting reflex and hindlimb weakness; 3, hindlimb paralysis; 4, 324 

hindlimb and forelimb paralysis; 5, moribund. Detailed materials and methods are presented fully in SI Appendix, SI Materials 325 

and Methods.  326 

Statistical Analysis. Statistical analysis was performed using GraphPad Prism. The data were analyzed by Student’s t-test. All P 327 

value less than 0.05 was considered significant (P < 0.05 = *; P < 0.01 = **; P < 0.001 = ***). 328 

329 
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Figure legends 451 

Fig 1. PP2A deficiency specifically limits TH17 differentiation in vitro.  452 

(A, B) Flow cytometry (A) and quantification (B) of IL17A staining in naïve CD4+ T cells from PP2A 453 
WT and cKO mice differentiated under TH17 polarizing condition for 5 days. (C) Enzyme-linked 454 
immunosorbent assay (ELISA) of IL17A in the culture medium of each polarizing condition (n=3 455 
technical replicates). (D) RT-PCR analysis of TH17 signature genes (n=3 technical replicates). Each 456 
symbol represents an individual mouse (n=8), error bars show mean ± SEM. Data are representative of 457 
at least three independent experiments with similar results.  458 

Fig 2. Loss of PP2A protects mice from EAE by repressing IL17A production.  459 

(A) Mean clinical scores for EAE from each group. (B) Representative histology of the brain and spinal 460 
cord (hematoxylin and eosin (H&E) on the left and luxol fast blue (LFB) on the right) of mice after 461 
EAE induction (day 19). Arrowheads indicate inflammatory infiltration (left) and demyelination (right). 462 
Scale bars represent 100 μm. (C) Number and frequency of mononuclear cells or CD4+ or CD8+ T cells 463 
infiltrated into central nervous system. (D) Flow cytometry of IL17A, IFNJ and Foxp3 staining from 464 
CNS (left panel) or DLN (right panel) CD4+ T cells. (E, F) Quantification of IL17A+, IFNJ+ and 465 
Foxp3+ CD4+ T cells in CNS (E) or DLN (F). (G) Splenocytes were rechallenged with MOG peptide 466 
(5μg/ml) or control vehicle for 3 days, and cytokine production was measured by ELISA. Each symbol 467 
represents an individual mouse (n=4-6); error bars show mean ± SEM. Data are representative of three 468 
independent experiments with similar results. 469 

Fig 3. Insufficient SMAD2 activation and overactivated SMAD3 under TGFβ pathway restrains 470 

TH17 differentiation.  471 

(A, B) Histograms (A) and mean fluorescence intensity (MFI) quantification (B) of TGFβ receptor Ⅰ 472 
and Ⅱ staining on CD4 gated cells from splenocytes of PP2A WT and cKO mice. (C) Enriched CD4+ T 473 
cells from PP2A WT and cKO were stimulated with 10 ng/ml TGFβ as indicated, whole cell lysates 474 
were probed with the indicated antibodies in the immunoblots. (D, E) Flow cytometry (D) and 475 
quantification (E) of TH17 polarization with ectopic expression of Vector, WT, 2SA and 2SD of 476 
SMAD2 in WT naïve CD4+ T cells. GFP expressing cells were gated for analysis on day 3. (F, G) Flow 477 
cytometry (F) and quantification (G) of TH17 polarization with ectopic expression of Vector, WT, 2SA 478 
and 2SD of SMAD3 in WT naïve CD4+ T cells. GFP expressing cells were gated for analysis on day 3. 479 
Each symbol represents an individual mouse (n=4). Error bars show mean ± SEM. Data are 480 
representative of three independent experiments (C) or two independent experiments with two 481 
replicates (D, F).  482 

Fig 4. Differential modulation of SMAD2/3 inhibits RORJt mediated Il17a transcription by 483 

forming complex with RORJt.  484 

(A) Flow cytometry of RORJt staining from naïve CD4+ T cells primed under TH17 polarizing 485 
condition for 2 days. (B) RORα was immunoblotted with whole cell lysate of TH17 cells. (C-D) Flow 486 
cytometry (C) and quantification (D) of TH17 polarization with ectopic expression of Vector or RORJt 487 
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in PP2A WT and cKO naïve CD4+ T cells. GFP expressing cells were gated for analysis on day 3. (E) 488 
RORJt binding to the sites of the Il17a gene promoter was analyzed by using chromatin 489 
immunoprecipitation (ChIP) assay with RT-PCR. (F) Co-IP analysis of binding ability with RORJt 490 
among SMAD2/3 in WT and cKO TH17 cells. (G) Co-IP analysis of binding ability with RORJt among 491 
WT, 2SA and 2SD mutant of SMAD2/3 in 293FT cells. (H) Flow cytometry of TH17 polarization with 492 
ectopic expression of Vector or SMAD2-2SD in PP2A WT and cKO naïve CD4+ T cells. (I) Ratio of 493 
IL17A frequency comparing VEC-cKO or SMAD2-2SD-cKO to VEC-WT. (J) Flow cytometry of TH17 494 
polarization after suppressing SMAD3 expression by siRNA in naïve CD4+ T cells. (K) The ratio of 495 
IL17A frequency in cKO cells transfected with siRNA-SMAD3 or control to the frequency of WT cells 496 
transfected with control. Error bars show mean ± SEM. Data are representative of three (A, B, G, H, J) 497 
or two (C, D, E, F) independent experiments.  498 

Fig 5. PP2A inhibitors lead the same change of SMAD2/3 activation under TGFβ pathway and 499 

limit TH17 priming in vitro.  500 

(A) SMAD2/3 was overexpressed in the 293FT cells and PP2A inhibitors were added in serum free 501 
medium for 2 hours followed by TGFβ (3 ng/ml) stimulation for 3 hours. Western Blot analysis using 502 
phospho-specific SMAD2/3 (p-SMAD2/3) and FLAG-tag (total-SMAD2/3) antibodies. (B) Il17a 503 
promoter and SMAD2/3 with or without RORJt was transfected into 293FT cells and then treated with 504 
PP2A inhibitors and TGFβ as Figure (A). Luciferase activity was measured and normalized based on 505 
Renilla luciferase gene. (C) Sorted naïve CD4+ T cells were polarized under TH17 priming condition 506 
with the indicated concentration of Cantharidin for 3 days and IL17A+ population was analyzed using 507 
flow cytometry on day 5. (D) The concentration of IL17A in the culture supernatant was measured by 508 
ELISA. (E) Histogram of CFSE fluorescence staining of cells in Figure (C). (F) WT naïve CD4+ T cells 509 
cultured with Cantharidin (5μM) for the first 3 days in TH17 priming condition and analyzed IL17A+ 510 
population by flow cytometry on day 5. Error bars show mean ± SEM. Data are representative of two 511 
independent experiments with similar results. 512 

Fig 6. A PP2A inhibitor suppresses EAE development.  513 

(A) PP2A WT and cKO mice were immunized with MOG(35-55) peptide. PP2A inhibitor Cantharidin 514 
(0.6 μg/g) was administered intraperitoneally daily from day 10 to day 12 and then was given once 515 
every two days. Mean clinical scores for EAE from each group. (B) Representative histology of the 516 
spinal cord (H&E left and LFB right) of mice after EAE induction (day 19). Arrowheads indicate 517 
inflammatory infiltration (left) and demyelination (right). Scale bars represent 100 μm. (C) 518 
Quantification of total mononuclear cells, CD4+ T cells, CD8+ T cells and myeloid cells that infiltrated 519 
into the CNS of WT mice at peak of the disease. (D) Ratio of CD4+ and CD8+ T cells (gated at CD45hi 520 
CD11b-) in the CNS of WT groups. (E, F) Ratio (E) and number (F) of IL17A+ or Foxp3+ or IFNJ+ 521 
CD4+ cells in the CNS of the WT groups at disease peak. (G) Quantification of total mononuclear cells, 522 
CD4+ T cells, CD8+ T cells and myeloid cells that infiltrated into the CNS of the cKO groups. (H) Ratio 523 
of CD4+ and CD8+ T cells (gated at CD45hi CD11b-) that infiltrated into the CNS of the cKO groups. 524 
Each symbol represents an individual mouse (n=5-7 per genotype); error bars show mean ± SEM. Data 525 
are representative of two independent experiments with similar results. 526 














