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Artificial bee colony (ABC) is a novel population-based optimizationmethod, having the advantage of less control parameters, being
easy to implement, and having strong global optimization ability. However, ABC algorithm has some shortcomings concerning its
position-updated equation, which is skilled in global search and bad at local search. In order to coordinate the ability of global and
local search, we first propose a self-adaptive ABC algorithm (denoted as SABC) in which an improved position-updated equation
is used to guide the search of new candidate individuals. In addition, good-point-set approach is introduced to produce the initial
population and scout bees. The proposed SABC is tested on 12 well-known problems. The simulation results demonstrate that the
proposed SABC algorithm has better search ability with other several ABC variants.

1. Introduction

Population-based optimization algorithms, such as whale
optimization algorithm (WOA) [1], flower pollination algo-
rithm (FPA) [2], bacterial foraging optimizer (BFO) [3],
cuckoo search algorithm (CSA) [4], fruit fly optimization
(FFO) [5], gravitational search optimizer (GSO) [6], and
chemical reaction optimization (CRO) [7], havemany advan-
tages over classical optimization methods and have been
successfully and broadly applied to solve global continuous
optimization problems in the last few decades [6].

In this paper, we used the advantage of ABC, presented
by Karaboga [8], which mimics the hunting behaviors of
honey bee swarm. Simulation results show that ABC is supe-
rior to many other population-based optimization methods,
namely, genetic algorithm (GA), evolution strategies (ES),
and particle swarm optimization (PSO) [9, 10]. ABC has
caused wide attention and applications since its invention in
2005, owing to its simplicity and fewer control parameters.
However, ABC faces some challenging problems, namely, low
precision and slow convergence. As a result, many improved
versions of ABC have been proposed to overcome these

shortcomings. Zhu and Kwong [11] presented an improved
Gbest-guided ABC (denoted as GABC) through combining
the global best (Gbest) individual with the position-updated
equation to enhance the ability of local search. Luo et al.
[12] presented an improved position-updated equation by
using global best individual information to generate offspring
individuals. Inspired by DE, Gao et al. [13] developed an
improved ABC variant applying the bees search only near
the global best one to enhance the exploitation. Xiang and
An [14] developed a modified position-updated equation to
accelerate the convergence speed. Moreover, chaotic opti-
mization mechanism is introduced to avoid being trapped
in local minima. Li et al. [15] presented an improved ABC
variant based on inertia weight and accelerating factors and
to coordinate the ability of global and local search. Gao and
Liu [16] developed twomodified position-updated equations,
namely, “ABC/best/1” and “ABC/rand/1.” Kang et al. [17]
developed a hybrid method which combines ABC algorithm
and pattern search method to speed up convergence. Gao et
al. [18] presented an improved version of ABC (denoted as
CABC) based on a modified position-updated equation. In
addition, the orthogonal experimental design is introduced.
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As we know, for an optimization algorithm, both global
and local search are necessary and they should bewell coordi-
nated to obtain better global performance [11]. Different from
the previous work, the position-updated equation ismodified
by self-adaptive adopting of the previous and global best
solution to generate new candidate offspring to coordinate
the ability of global and local search. Moreover, the good-
point-set approach is used to generate initial population.The
proposed SABC is tested on 12 benchmark global optimiza-
tion problems.The experimental results show that our SABC
algorithm is superior to basic ABC and other ABC variants.

The remainder of this study is organized as follows. The
standard ABC is described in Section 2. The improved ABC
called SABC algorithm is proposed and analyzed in Section 3.
In Section 4, 12 benchmark global optimization problems are
used to test the proposed SABC algorithm. Finally, Section 5
summarized the conclusions.

2. Artificial Bee Colony

ABC is metaheuristic optimization method inspired by
hunting behavior of honey bee swarm. At the initialization
step, generate randomly 𝑁 solutions to construct an initial
population:

𝑥𝑖,𝑗 = 𝑙𝑖,𝑗 + rand (0, 1) ⋅ (𝑢𝑖,𝑗 − 𝑙𝑖,𝑗) , (1)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . , 𝑛; rand(0, 1) is a uniformly
distributed random number; 𝑙𝑖,𝑗 and 𝑢𝑖,𝑗 are the lower and
upper bounds for the dimension 𝑗, respectively.

In onlooker bee stage, food source is chosen by probabil-
ity 𝑝𝑖

𝑝𝑖 = fit𝑖∑𝑁𝑖=1 fit𝑖 , (2)

where fit𝑖 denotes the fitness value of
→𝑋𝑖 and is defined as

fit𝑖 =
{{{{{{{

1
1 + 𝑓 (→𝑋𝑖) , 𝑓 (→𝑋𝑖) ≥ 0
1 + 𝑓 (→𝑋𝑖) , 𝑓 (→𝑋𝑖) < 0,

(3)

where 𝑓(→𝑋𝑖) denotes the objective function values of the
decision vector →𝑋𝑖.

A candidate food source position →𝑉𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑛)
can be generated from the old one →𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛) as

V𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗 (𝑥𝑖𝑗 − 𝑥𝑘𝑗) , (4)

where 𝑗 = {1, 2, . . . , 𝑛} and 𝑘 = {1, 2, . . . , 𝑁} are randomly
selected individuals; 𝑘 is different from 𝑖; and 𝜙𝑖𝑗 is a random
uniformly distributed number in [−1, 1].

Pseudocode of basic ABC is given in Algorithm 1.

3. Self-Adaptive Artificial Bee Colony (SABC)

3.1. Population Initialization. Note that, for ABC algorithm,
in order to find the existing area of optimal solutions faster,
initial population should cover the whole search space.
Good-point-set method is widely applied to generate many
uniformly distributed candidate individuals [19]. Therefore,
we apply good-point-set technique for producing initial
population of ABC to maintain diversity of population.
The pseudocode of good-point-set technique is given in
Algorithm 2.

The uniformity properties of random method and good-
point-set method are compared as given in Figure 1 and
it displays the 80 points on a unit square generated using
random number generator and good-point-set approach.

From Figure 1, the candidate individuals produced
through good-point-set technique aremore uniform than the
candidate individuals produced by random method. Thus,
good-point-set method is preferred technique for generating
initial population.

3.2. Modified Search Equation. On the basis of the position-
updated equation depicted by (4), the offspring individual is
produced through moving the previous individual towards
(or far away from) another individual chosen randomly in
population. Nevertheless, the randomly chosen individual is
a good individual or a bad one; the probability is the same.
Therefore, the offspring individual could not be guaranteed
to be better than the previous one. In addition, the coefficient𝜙𝑖𝑗 in (4) is a random number over the range [−1, 1] and 𝑥𝑘𝑗
is a randomly selected solution from population. Thus, the
position-updated equation depicted by (4) is skilled in global
search and bad at local search [11].

For the sake of enhancing the performance of ABC, one
active research trend is to investigate its position-updated
equation. As mentioned above, the characteristics of the
search equations of ABC have been extensively investigated.
ABC researchers have suggested many empirical guidelines
for modifying search equation during the last decade. It
has been clear that some search equations can speed up
the convergence [11–13], and some others are suitable for
the global search [20]. Indubitably, these experiences are
extremely helpful for improving the performance of ABC.
“ABC/rand/1” and “ABC/best/1” are invariably employed in
lots of ABC variants and their characteristics have been
commendably investigated. The equations of “ABC/rand/1”
and “ABC/best/1” are stated as [16]

“ABC/rand/1”: V𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜙𝑖𝑗 (𝑥𝑟
1
,𝑗 − 𝑥𝑟

2
,𝑗) (5)

“ABC/best/1”: V𝑖,𝑗 = 𝑥best,𝑗 + 𝜙𝑖𝑗 (𝑥𝑟
1
,𝑗 − 𝑥𝑟

2
,𝑗) , (6)

where 𝑟1 and 𝑟2 are randomly selected from {1, 2, . . . , 𝑁}, and𝑟1 ̸= 𝑟2 ̸= 𝑖. 𝑥best,𝑗 is global best solution position vector
and 𝑗 ∈ {1, 2, . . . , 𝑛} denotes 𝑗 dimension. 𝜙𝑖𝑗 is a uniformly
distributed random number in [−1, 1]. The “ABC/rand/1”
search equation is one of many often used in the paper. In
“ABC/rand/1” equation, all positions are randomly chosen
in population and, consequently, it does not have any bias
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(01) Initialize the parameters.
(02) Initialize N solutions to construct an initial population.
(03) Evaluate the fitness values of each solution.
(04) cycle = 1.
(05) Repeat
(06) Generate a offspring individual by Eq. (4) and evaluate its quality.
(07) Compare and select the better one.
(08) Calculate probabilities through Eq. (2).
(09) Produce randomly a number in [0, 1].
(10) Generate a offspring individual by Eq. (4) and evaluate its quality.
(11) Compare and select the better one.
(12) Memorize the best solution achieved so far.
(13) cycle = cycle + 1.
(14) Until cycle=Maximum cycle number

Algorithm 1: Pseudo-code of basic ABC algorithm.

(01) Set the population size𝑁; the decision variables dimension 𝑛, 𝑖 = 1, 𝑗 = 1.
(02) For 𝑖 = 1 to 𝑛 do
(03) For 𝑗 = 1 to𝑁 do
(04) 𝑎 = 2 ∗ 𝑛 + 3;
(05) While 𝑝 ∼= 𝑎 do
(06) Set individual counter 𝑘 = 2.
(07) For 𝑘 = 2 to 𝑎 − 1 do
(08) If mod(𝑎, 𝑖) == 0 then
(09) 𝑎 = 𝑎 + 1;
(10) Else
(11) 𝑝 = 𝑎;
(12) End if
(13) End for
(14) End while
(15) 𝑟(𝑖) = 2 ∗ cos(2 ∗ 𝑝𝑖 ∗ 𝑖/𝑝);
(16) 𝑥(𝑖) = mod(𝑟(𝑖) ∗ 𝑁, 1);
(17) End for
(18) End for

Algorithm 2: Good point set method.

Random method
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Figure 1: 80 points in the unit squares generated through random and good-point-set approaches.
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in particular positions and randomly selects new positions.
Therefore, they often show better global search ability with
slow convergence. “ABC/best/1” has faster convergence based
on global optima position. However, they are more likely to
fall into local optima.

In the ABC algorithm, appropriate coordinate of global
search and local search is very important for obtaining the
optima effectively. In order to bring about a balance between
global and local search abilities of ABC, we first introduces
a parameter 𝜆, which coordinates the effect of previous
position on the current one, by modifying (4) to

V𝑖,𝑗 = 𝜆𝑥𝑖,𝑗 + (1 − 𝜆) 𝑥best,𝑗 + 𝜙𝑖,𝑗 (𝑥𝑟
1
,𝑗 − 𝑥𝑟

2
,𝑗) , (7)

where 𝜆 ∈ [0, 1] is utilized to influence the balance between
global and local search abilities of individuals, the indices 𝑟1
and 𝑟2 are randomly selected from {1, 2, . . . , 𝑁}, and 𝑟1 ̸=𝑟2 ̸= 𝑖. 𝑥best,𝑗 is global best solution position vector and 𝑗 ∈{1, 2, . . . , 𝑛}denotes jdimension.𝜙𝑖𝑗 is a uniformly distributed
random number.

Note that the parameter 𝜆 is crucial in balancing the
abilities of global and local search. When 𝜆 is equal to 1,
(7) becomes (5). When 𝜆 decreases from 1 to 0, the global
search ability of (7) will also decrease correspondingly.When𝜆 takes 0, (7) is (6).The search performance of algorithm will
adaptively adjust through changing the parameter 𝜆. From
(7), with a large value of 𝜆 in the early stage, individuals are
admitted tomove in all directions of solution space, instead of
moving towards the best individual. A small value of 𝜆 allows
the population to converge to the global optimal solution
in later stage. Therefore, a well-tuned 𝜆 is very important.
The parameter 𝜆 in this paper is calculated according to the
following function:

𝜆 = 𝑇 − 𝑡𝑇 , (8)

where t denotes number of iterations and T denotes a pre-
defined maximum number of iterations. Thus, the improved
position-updated equation developed by (7) is able to balance
the abilities of global and local search of SABC.

3.3. Rank Selection. As we know, the roulette wheel selection
mechanism is employed in classical ABC. This selection
strategy makes more chance to select individuals with higher
fitness [14]. To keep population diversity better, a rank-based
selection mechanism is introduced in this paper. Selection
probability pi is defined [21]:

𝑝𝑖 = 1𝑁 + 𝑎 (𝑡) 𝑁 + 1 − 2𝑖𝑁 (𝑁 + 1) , 𝑖 = 1, 2, . . . , 𝑁. (9)

𝑎 (𝑡) = 0.2 + 3𝑡4𝑡max
, (10)

where𝑁 is the population size, 𝑎(𝑡) is parameters, 𝑡 is current
iteration, 𝑡max is maximum iteration.

3.4. The Proposed SABC Algorithm. The flow chart of pro-
posed SABC algorithm is presented in Figure 2.

4. Simulation Results and Comparisons

4.1. Benchmark Test Functions. To evaluate the performance
of SABC, 12 benchmark test problems from [14, 15, 22] are
used and are shown in Table 1.

4.2. Comparison between SABC and Basic ABC Algorithm.
In SABC, population size N is 40, limit is 100, and the
maximum iteration is 1000. Each experiment is repeated
30 runs independently. The experimental results of SABC
and basic ABC are given in Table 2 regarding the best, the
mean, the worst, the standard deviation (St.dev), and the
convergence iteration (CI).

As seen from Table 2, SABC is able to obtain global
optima for three functions (f 6, f 8, and f 10). Moreover,
in seven functions (f 1–f 4, f 9, f 11, and f 12), the results
obtained by SABC are pretty near to global optimal solution.
Compared with ABC, SABC can obtain much better results
than ABC on 12 functions, that is, f 1–f 12. The convergence
performance of SABC and basic ABC on 12 functions are
drawn in Figure 3 so as to show the performance of SABC
more clearly.

4.3. Comparison between SABC and ABC Variants. SABC
is compared against four high-performance ABC algo-
rithms under three performance evaluation criteria: Mean,
St.dev, and CI. These selected ABC variants such as Gbest-
guided ABC (denoted as GABC) algorithm [11], an efficient
and robust ABC (abbreviated as ERABC) algorithm [14],
improved ABC (abbreviated as IABC) algorithm [15] and
prediction and selection ABC (denoted as PSABC) [15]. The
parameters settings are the same as those of ERABC [14] and
PSABC [15] together with SABC. The comparative results
have been shown in Tables 3 and 4. The results provided
by other algorithms were directly taken from the original
references for each approach.

From Tables 3 and 4, compared to GABC, SABC could
achieve much better “mean” and “standard deviation” results
than GABC on 11 problems except for function f 7. For the
function f 7, SABC algorithm obtained similar results. In
addition, the convergence iteration obtained by SABC is
smaller than those of ABC, except for function f 7.

As can be seen from Tables 3 and 4, with respect
to ERABC, SABC obtained better “mean” and “standard
deviation” values on two functions (f 3 and f 4) and similar
results on four test functions (f 6, f 8, f 9, and f 10). However,
ERABC algorithm provided better results on six problems
(f 1-f 2, f 5, f 7, and f 11-f 12) than SABC.

From Tables 3 and 4, compared to IABC, SABC obtained
better results on five functions (f 3, f 5, f 6, f 11, and f 12) and
similar solutions on four functions (f 7, f 8, f 9, and f 10).
However, IABC provided better solutions on three functions
(f 1, f 2, and f 4) than SABC algorithm.

In comparison with PSABC, in Tables 3 and 4, SABC
provided better solutions on four test functions (f 3, f 5, f 6, and
f 11) and similar results on five functions (f 7, f 8, f 9, f 10, and
f 12). However, the PSABC algorithm found better solutions
on three functions (f 1, f 2, and f 4).
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Table 2: Experimental results of SABC and ABC in 𝑓1–𝑓12.
Number Dimension Methods Best Mean Worst SD CI

f 1
30 ABC 4.6231𝐸 − 10 7.1171𝐸 − 10 1.1766𝐸 − 09 4.0299𝐸 − 10 982

SABC 4.1163𝐸 − 25 1.1061𝐸 − 24 1.5769𝐸 − 23 1.8645𝐸 − 24 467

50 ABC 1.1506𝐸 − 05 6.1887𝐸 − 05 1.3418𝐸 − 04 6.4204𝐸 − 05 1000
SABC 1.4239𝐸 − 25 6.0779𝐸 − 24 1.5665𝐸 − 23 4.3555𝐸 − 24 567

f 2
30 ABC 7.1038𝐸 − 07 2.1352𝐸 − 06 1.8472𝐸 − 05 1.6161𝐸 − 06 1000

SABC 2.2631𝐸 − 17 4.3501𝐸 − 17 6.8724𝐸 − 17 5.9788𝐸 − 18 988

50 ABC 1.4589𝐸 − 03 2.5687𝐸 − 03 4.7673𝐸 − 03 7.2431𝐸 − 04 1000
SABC 8.3862𝐸 − 13 3.2128𝐸 − 12 7.0340𝐸 − 12 2.6239𝐸 − 12 951

f 3
30 ABC 2.3747𝐸 + 02 4.0476𝐸 + 02 7.3452𝐸 + 02 1.8433𝐸 + 02 1000

SABC 1.1928𝐸 − 24 4.6715𝐸 − 24 8.3532𝐸 − 24 2.9293𝐸 − 24 393

50 ABC 1.0263𝐸 + 03 1.3498𝐸 + 03 1.8414𝐸 + 03 3.1333𝐸 + 02 1000
SABC 3.7284𝐸 − 24 8.7797𝐸 − 24 1.8362𝐸 − 23 5.5293𝐸 − 24 565

f 4
30 ABC 19.2342 21.7466 24.3791 1.6750 1000

SABC 3.7668𝐸 − 13 1.5260𝐸 − 12 4.4526𝐸 − 12 8.9061𝐸 − 13 952

50 ABC 48.3573 56.7818 70.2795 9.5092 1000
SABC 1.0362𝐸 − 12 2.5018𝐸 − 12 6.5874𝐸 − 12 1.8606𝐸 − 12 983

f 5
30 ABC 1.0598 2.4438 4.6864 1.3676 1000

SABC 1.0148𝐸 − 04 1.9505𝐸 − 04 3.7937𝐸 − 04 2.7217𝐸 − 04 999

50 ABC 18.4882 23.7003 28.5976 4.8506 1000
SABC 1.2218𝐸 − 01 2.3657𝐸 − 01 4.1856𝐸 − 01 1.1026𝐸 − 01 1000

f 6
30 ABC 8.5740𝐸 − 20 2.2257𝐸 − 19 3.2408𝐸 − 19 8.3640𝐸 − 20 588

SABC 0 0 0 0 97

50 ABC 1.7016𝐸 − 02 3.3668𝐸 − 01 9.6818𝐸 − 01 3.7865𝐸 − 01 985
SABC 0 0 0 0 108

f 7
30 ABC 8.9359𝐸 − 02 1.8702𝐸 − 01 2.6427𝐸 − 01 5.6650𝐸 − 02 1000

SABC 7.8137𝐸 − 03 1.4728𝐸 − 02 3.6362𝐸 − 02 6.9294𝐸 − 03 1000

50 ABC 1.9388𝐸 − 01 4.3249𝐸 − 01 8.9758𝐸 − 01 3.1615𝐸 − 01 1000
SABC 5.9068𝐸 − 02 8.4158𝐸 − 02 1.0092𝐸 − 01 1.7730𝐸 − 02 998

f 8
30 ABC 3.7327𝐸 − 08 1.4133𝐸 − 05 4.2206𝐸 − 05 2.4312𝐸 − 05 956

SABC 0 0 0 0 109

50 ABC 5.59127 6.47346 7.19213 0.81286 1000
SABC 0 0 0 0 253

f 9
30 ABC 1.4010𝐸 − 05 3.2429𝐸 − 05 5.0576𝐸 − 05 1.8280𝐸 − 05 1000

SABC 4.4409𝐸 − 15 7.9906𝐸 − 15 1.1546𝐸 − 14 9.3294𝐸 − 16 802

50 ABC 2.6146𝐸 − 02 5.1473𝐸 − 02 8.5138𝐸 − 02 3.0367𝐸 − 02 1000
SABC 1.5099𝐸 − 14 1.5099𝐸 − 14 1.5099𝐸 − 14 0 817

f 10
30 ABC 8.3116𝐸 − 08 4.9243𝐸 − 03 1.4773𝐸 − 02 8.5290𝐸 − 03 1000

SABC 0 0 0 0 243

50 ABC 2.1268𝐸 − 05 1.8178𝐸 − 02 5.4485𝐸 − 02 3.1443𝐸 − 02 1000
SABC 0 0 0 0 624

f 11
30 ABC 2.3733𝐸 − 12 7.2076𝐸 − 12 1.4228𝐸 − 11 6.2224𝐸 − 12 1000

SABC 1.0582𝐸 − 24 3.7213𝐸 − 24 7.4688𝐸 − 24 2.2940𝐸 − 24 546

50 ABC 7.9534𝐸 − 08 1.8292𝐸 − 07 3.2155𝐸 − 07 1.2480𝐸 − 07 1000
SABC 1.5732𝐸 − 19 2.2735𝐸 − 19 3.9719𝐸 − 19 8.7756𝐸 − 20 681

f 12
30 ABC 2.3336𝐸 − 10 6.4815𝐸 − 10 1.3293𝐸 − 09 5.9458𝐸 − 10 1000

SABC 2.3648𝐸 − 18 4.6324𝐸 − 18 7.2155𝐸 − 18 1.3751𝐸 − 18 696

50 ABC 6.3245𝐸 − 07 2.2850𝐸 − 06 5.5056𝐸 − 06 2.7894𝐸 − 06 1000
SABC 4.4409𝐸 − 15 6.8094𝐸 − 15 7.9936𝐸 − 15 2.0512𝐸 − 15 834
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Generate an initial population 
through Algorithm 1

Evaluate the fitness of
each individual

Employed bees stage

and evaluate its quality

selection; the better one is selected

Compute the probability

Onlooker bees stage

Produce randomly a number (rand) in [0, 1]

and evaluate its quality

selection; the better one is selected

Is termination
criteria satisfied? Hold the global best so far

Begin

Yes

No

Yes

Set cycle = 1

Compare Vi and Xi using greedy

Compare Vi and Xi using greedy

pi through (9)

rand(0, 1) < pi

cycle = cycle + 1

Generate an offspring (Vi) using (7)

Generate an offspring (Vi) using (7)

Figure 2: Flow chart of proposed SABC algorithm.

4.4. Effects of Limit on the Performance of SABC. To inves-
tigate the impact of limit, four different test functions with𝐷 = 30 are used. They are Sphere (f 1), Rastrigin (f 8), Ackley
(f 9), and Griewank (f 10). Five different values of limit (i.e.,
50, 100, 150, 200, and 250) are used to optimize the four
high dimensional test functions.Themean values (mean) and

the standard deviation values (St.dev) are shown in Table 5.
The box plots of different limit values for four functions are
presented in Figure 4.

From Table 5, parameter limit is able to influence the
performance of SABC. When limit is equal to 100, SABC
achieves better performance for three functions (f 1, f 8, and
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Figure 3: Continued.
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Figure 3: Convergence curve of SABC and basic ABC for twelve functions (𝐷 = 30).
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Table 3: Performance comparison of GABC, ERABC, IABC, PSABC, and SABC on test functions 𝑓1–𝑓12 (Dim = 30).

Number GABC ERABC IABC PSABC SABC

f 1
Mean 6.2643𝐸 − 16 0 0 0 1.1061𝐸 − 24
St.dev 1.0859𝐸 − 16 0 0 0 1.8645𝐸 − 24
CI 986 842 322 336 467

f 2
Mean 1.3019𝐸 − 10 2.1049𝐸 − 233 0 0 4.3501𝐸 − 17
St.dev 4.6859𝐸 − 11 0 0 0 5.9788𝐸 − 18
CI 1000 1000 30 22 988

f 3
Mean 1.0939𝐸 + 04 1.2202𝐸 − 20 1.4344𝐸 + 04 6.1069𝐸 + 03 4.6715E − 24
St.dev 2.5670𝐸 + 03 0 2.7291𝐸 + 03 1.6947𝐸 + 03 2.9293E − 24
CI 1000 998 999 1000 393

f 4
Mean 12.6211 2.7073𝐸 − 08 1.207E − 197 8.591𝐸 − 115 1.5260𝐸 − 12
St.dev 2.6556 1.2604𝐸 − 07 0 4.705𝐸 − 114 8.9061𝐸 − 13
CI 1000 985 1000 1000 952

f 5
Mean 7.47961 1.5450E − 06 26.4282 1.5922 1.9505𝐸 − 04
St.dev 19.0926 7.5654E − 06 1.3956 4.4066 2.7217𝐸 − 04
CI 1000 999 1000 1000 999

f 6
Mean 6.4499𝐸 − 16 0 3.8463𝐸 − 10 5.7169𝐸 − 16 0
St.dev 1.1126𝐸 − 16 0 2.3239𝐸 − 10 8.2549𝐸 − 17 0
CI 997 20 999 671 97

f 7
Mean 8.4786𝐸 − 02 9.7185E − 05 1.9609𝐸 − 02 2.1514𝐸 − 02 1.4728𝐸 − 02
St.dev 2.7907𝐸 − 02 6.7013E − 05 9.3459𝐸 − 03 6.8816𝐸 − 02 6.9294𝐸 − 03
CI 983 797 1000 997 1000

f 8
Mean 3.3165𝐸 − 01 0 0 0 0
St.dev 1.8165𝐸 − 01 0 0 0 0
CI 1000 143 84 80 109

f 9
Mean 7.7828𝐸 − 10 1.0066𝐸 − 15 8.8817E − 16 8.8817E − 16 7.9906𝐸 − 15
St.dev 2.9817𝐸 − 10 6.4863𝐸 − 16 0 0 9.3294𝐸 − 16
CI 1000 93 156 188 802

f 10
Mean 6.9655𝐸 − 04 0 0 0 0
St.dev 2.2609𝐸 − 03 0 0 0 0
CI 1000 58 684 834 243

f 11
Mean 5.8570𝐸 − 16 1.5705E − 32 7.1096𝐸 − 12 5.5312𝐸 − 16 3.7213𝐸 − 24
St.dev 1.1349𝐸 − 16 5.5674E − 48 5.2513𝐸 − 12 8.6858𝐸 − 17 2.2940𝐸 − 24
CI 938 105 1000 625 546

f 12
Mean 2.1724𝐸 − 07 1.3498E − 32 4.7831𝐸 − 08 6.0601𝐸 − 18 4.6324𝐸 − 18
St.dev 5.6676𝐸 − 07 5.5674E − 48 2.0359𝐸 − 07 5.6064𝐸 − 18 1.3751𝐸 − 18
CI 996 105 995 567 696

f 10). For the Ackley function (f 9), the effect of limit on the
performance of SABC is very little. FromFigure 3 andTable 5,
parameter limit = 100 is a suitable choice in SABC algorithm.

5. Conclusion

An improved version of ABC, called SABC, is developed by
using good-point-set initialization employed to enhance the
population distribution, rank-based selection strategy used
to enhance the global search ability, self-adaptive position-
updated equation applying for balancing the exploration and
exploitation. The proposed SABC is tested on 12 well-known
global optimization problems. The simulation results show
that our algorithm is superior to the conventional ABC and

other ABC variants. The further work includes the studies
on how to develop SABC to deal with those constrained and
engineering design problems.
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Table 4: Performance comparison of GABC, ERABC, IABC, PSABC, and SABC on test functions f 1–f 12 (Dim = 50).

Number GABC ERABC IABC PSABC SABC

f 1
Mean 1.2546𝐸 − 05 0 0 0 6.0779𝐸 − 24
St.dev 6.0511𝐸 − 09 0 0 0 4.3555𝐸 − 24
CI 1000 934 726 628 567

f 2
Mean 2.3671𝐸 − 05 1.2627𝐸 − 226 0 0 3.2128𝐸 − 12
St.dev 6.1989𝐸 − 06 0 0 0 2.6239𝐸 − 12
CI 1000 1000 61 74 951

f 3
Mean 4.1236𝐸 + 04 1.0937E − 141 4.6927𝐸 + 04 3.0118𝐸 + 04 8.7797𝐸 − 24
St.dev 5.8269𝐸 + 03 5.9904E − 141 7.3584𝐸 + 03 4.1073𝐸 + 03 5.5293𝐸 − 24
CI 1000 1000 1000 1000 565

f 4
Mean 45.3075 1.3695𝐸 − 08 25.5055 19.6683 2.5018E − 12
St.dev 4.3151 5.0911𝐸 − 08 5.6662 6.3094 1.8606E − 12
CI 1000 992 999 1000 983

f 5
Mean 25.7164 1.1000E − 03 47.0287 34.4913 2.3657𝐸 − 01
St.dev 31.75811 3.7000E − 03 0.8601 30.3412 1.1026𝐸 − 01
CI 1000 983 1000 1000 1000

f 6
Mean 5.6529𝐸 − 09 0 1.8434𝐸 − 05 1.1674𝐸 − 15 0
St.dev 3.6854𝐸 − 09 0 1.7466𝐸 − 05 1.4114𝐸 − 16 0
CI 1000 44 1000 1000 108

f 7
Mean 2.4609𝐸 − 01 9.4755E − 05 8.8306𝐸 − 02 6.5309𝐸 − 02 8.4158𝐸 − 02
St.dev 4.7278𝐸 − 02 6.5181E − 05 2.5540𝐸 − 02 1.7705𝐸 − 02 1.7730𝐸 − 02
CI 1000 979 998 966 998

f 8
Mean 2.1733 0 0 0 0
St.dev 1.0728 0 0 0 0
CI 1000 173 172 140 253

f 9
Mean 1.1137𝐸 − 04 1.2434𝐸 − 15 8.8817E − 16 8.8817E − 16 1.5099𝐸 − 14
St.dev 3.8873𝐸 − 05 1.0840𝐸 − 15 0 0 0
CI 1000 109 306 365 817

f 10
Mean 1.0470𝐸 − 03 0 0 0 0
St.dev 2.7482𝐸 − 03 0 0 0 0
CI 1000 71 696 836 624

f 11
Mean 9.3017𝐸 − 11 9.4233E − 33 5.4223𝐸 − 07 1.0252𝐸 − 15 2.2735𝐸 − 19
St.dev 7.9664𝐸 − 11 2.7837E − 48 2.9821𝐸 − 07 1.5815𝐸 − 16 8.7756𝐸 − 20
CI 1000 113 999 979 681

f 12
Mean 8.8776𝐸 − 07 1.3498E − 32 2.4156𝐸 − 05 5.0541𝐸 − 18 6.8094𝐸 − 15
St.dev 1.5324𝐸 − 06 5.5674E − 48 4.3568𝐸 − 05 1.5350𝐸 − 16 2.0512𝐸 − 15
CI 999 123 998 959 834

Table 5: The experimental results of SABC with different limit values.

Function Limit = 50 Limit = 100 Limit = 150 Limit = 200 Limit = 250

Sphere (f 1)
Mean 1.6723𝐸 − 22 1.1061E − 24 2.5730𝐸 − 23 1.7838𝐸 − 20 3.1027𝐸 − 19
St.dev 9.1091𝐸 − 23 1.8645E − 24 1.4855𝐸 − 23 1.7195𝐸 − 20 7.3276𝐸 − 19

Rastrigin (f 8)
Mean 1.8629𝐸 − 14 0 0 2.0400𝐸 − 14 6.6501𝐸 − 14
St.dev 3.2113𝐸 − 14 0 0 1.9637𝐸 − 14 7.7353𝐸 − 14

Ackley (f 9)
Mean 1.5328𝐸 − 14 7.9906E − 15 8.4720𝐸 − 15 9.4136𝐸 − 15 1.8826𝐸 − 14
St.dev 4.4680𝐸 − 15 9.3294E − 16 1.8026𝐸 − 15 3.3117𝐸 − 15 8.7152𝐸 − 15

Griewank (f 10)
Mean 4.8762𝐸 − 12 0 5.9952𝐸 − 16 8.6898𝐸 − 12 5.9682𝐸 − 07
St.dev 1.1261𝐸 − 11 0 1.5413𝐸 − 15 4.5680𝐸 − 11 2.2794𝐸 − 06
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Figure 4: Box plots of different limit values for function f 1, f 8, f 9, and f 10 over 30 independent runs.
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