134 research outputs found

    Earnings Expectations and the Quality of Financial Services

    Get PDF
    Using complaint data filed by consumers with the Consumer Financial Protection Bureau against financial institutions, we show that banks receive, on average, 13.3% more customer complaints in the quarter immediately after they narrowly beat analysts’ earnings forecasts. The effect is mainly driven by banks’ attempts to reduce their non-interest expenses to beat earnings benchmarks. The relationship is stronger when bank CEOs receive a greater proportion of incentive-based compensation. Overall, our

    Incoherent illumination for motion-based imaging through thick scattering medium

    Full text link
    Object-motion-based speckle correlation can recover hidden objects from any inhomogeneous medium, which takes advantage of the inherent connection that the cross-correlation between speckle patterns can reflect the autocorrelation of object, providing a route for imaging through or inside thick scattering media. However, once the object is phase-modulated, the above-mentioned relation will not be satisfied under coherent illumination, and the objects cannot be recovered using the existing approaches. Here, we propose an incoherent illumination method for object-motion-based imaging. Theoretical analysis and experimental results show that the cross-correlation between the object-motion-based speckle patterns can be directly used to represent the intensity autocorrelation of the object, making it possible to recover hidden objects regardless of whether the object is phase-modulated or not. Moreover, the proposed approach has a lower root-mean-square error for extracting the autocorrelation patterns of the hidden object. The proposed imaging mechanism blazes a way of imaging moving objects with scattering-induced or intrinsic phase profile, which is in favor of complex imaging scenarios such as inhomogeneous object imaging, deep tissue imaging, and passive lighting scattering imaging

    EFFECTS OF VIETNAMESE SOPHORA ROOT ON GROWTH, ADHESION, INVASION AND MOTILITY OF MELANOMA CELLS

    Get PDF
    Background: Vietnamese Sophora Root mainly contains active constituents such as alkaloids, and it has anti-tumour, antibacterial, and anti-inflammatory effects. The objective of the paper was to study the effects of Vietnamese Sophora Root on growth, adhesion, invasion and motility of mouse melanoma B16BL6 cells, and to preliminarily explore its mechanism of action. Materials and Methods: MTT assay was used to detect the effect of Vietnamese Sophora Root aqueous extract on B16BL6 cell proliferation. Cell adhesion assay, reconstituted basement membrane invasion assay and chemotactic motility assay were used to observe the effects of Vietnamese Sophora Root aqueous extract on adhesion, invasion and motility of B16BL6 cells. Results: Different concentrations of Vietnamese Sophora Root aqueous extracts had different degrees of inhibitory effects on B16BL6 proliferation. With the decrease of concentration, the proliferation inhibitory effect decreased and even turned to promoting effect. The extract significantly inhibited the adhesion of B16BL6 cells to the basement membrane component LN, and had a significant effect on both the invasive and migratory capacities of B16BL6 cells through the basement membrane. Conclusion: We concluded that the aqueous extract of Vietnamese Sophora Root can inhibit the proliferation of melanoma cells, as well as their adhesion and movement

    Clean process to utilize the potassium-containing phosphorous rock with simultaneous HCl and KCl production via the steam-mediated reactions

    Get PDF
    In this paper, a clean process based on the steam-mediated reactions for simultaneous HCl and KCl production using the potassium (K)-containing phosphorous rock as a precursor is proposed. Through hydrochloric acid (HCl) leaching, not only the generation of H3PO4and CaCl2 (via further precipitation) were realized but also the acid-insoluble residue [phosphorous-rock slag (PS)] rich in elements, that is, K, Al, Si, and so on, in the form of microcline (KAlSi3O8) and quartz (SiO2) was obtained and became readily available for further HCl and KCl generation. Over 95 % of the elements, that is, K, Al, and Si, come into the final products, and the overall acid consumption (based on HCl) is significantly reduced (90%) due to recovery of acids. The impacts of the key operational parameters such as temperature, duration, and reagent impregnate ratio were rigorously analyzed via a supervised machine learning approach, and the optimal conditions were determined [reaction temperature, X1, 850 °C; reaction duration, X2, 40 min; and impregnate ratio (PS over CaCl2), X3, 2.5] with approximately ± 10% uncertainties. Thermodynamic analysis indicates that the introduction of steam to PS + CaCl2 not only enhances the chemical potential for the formation of HCl and KCl but also provides the transport advantage in continuously removing the generated products, that is, HCl and KCl, out of the system. Molecular simulation indicates that the presence of both steam and SiO2 in the PS matrix plays critical roles in decomposing PS + CaCl2 at high temperature. The shrinking core model shows that both the intrinsic kinetics and transport are influential with the activation energy being around 14.63 kJ/mol. The potential reaction pathway is postulated

    Independent Association of Serum Fibroblast Growth Factor 21 Levels With Impaired Liver Enzymes in Hyperthyroid Patients

    Get PDF
    Fibroblast growth factor 21 (FGF21) is identified as a potential biomarker for liver diseases. However, information is limited regarding serum FGF21 and impaired liver function in hyperthyroidism. We aim to determine the potential association of serum FGF21 levels with impaired liver enzymes in hyperthyroid patients. In this case-control study, 105 normal subjects and 122 overt hyperthyroid patients were included. Among them, 41 hyperthyroid patients who obtained euthyroid status after thionamide treatment received second visit. Serum FGF21 levels were determined using the ELISA method. Compared to the normal subjects, patients with hyperthyroidism had significantly elevated serum liver enzymes, including alanine transaminase (ALT) (p < 0.001), aspartate aminotransferase (AST) (p < 0.001) levels, as well as FGF21 levels (p < 0.001). Further analysis showed serum FGF21 (p < 0.05), as well as thyroid hormone (TH) free T3 (p < 0.05), free T4 (p < 0.05) levels were higher in hyperthyroid patients with impaired liver enzymes than in those with normal liver enzymes. After reversal of hyperthyroid state, elevated serum FGF21 levels in hyperthyroid patients declined significantly (p < 0.001), with a concomitant decrease in serum ALT (p < 0.001), AST (p < 0.001) levels. Correlation analysis showed close correlation between FGF21 and ALT (p < 0.002), AST (p < 0.012), free T3 (p < 0.001), free T4 (p < 0.001). Further logistic regression analysis revealed FGF21 is significantly associated with elevated ALT [Odds Ratio, OR 1.79, (95% confidence interval, CI), (1.30–2.47), P < 0.001], AST [1.59 (1.07–2.34), p < 0.020]. After adjustment of potential confounders, the association between FGF21 and elevated ALT remained significant [1.42 (1.01–1.99), p < 0.043]. In conclusion, serum FGF21 is independently associated with impaired liver enzymes in hyperthyroid patients

    Genetic and phenotypic profiling of single living circulating tumour cells from patients with microfluidics

    Get PDF
    Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non–small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction

    A novel local and nonlocal total variation combination method for image restoration in wireless sensor networks

    No full text
    Abstract In this paper, we propose a novel local and nonlocal total variation combination method for image restoration in wireless sensor networks (WSN), which plays an important role in improving the quality of the transmitted image. First, the degrade image is preprocessed by an image smoothing scheme to divide the image into two regions. One contains edges and flat regions by the local TV term. The other is rich in image details and regularized by the nonlocal TV term. Then, the alternating direction method of multipliers (ADMM) algorithm is adopted to optimize the complex object function, and two key parameters are discussed for better performance. Finally, we compare our method with several recent state-of-the-art methods and illustrate the efficiency and performance of the proposed model by experimental results in peak signal to noise ratio (PSNR) and computing time

    Medical Image Fusion Based on Rolling Guidance Filter and Spiking Cortical Model

    Get PDF
    Medical image fusion plays an important role in diagnosis and treatment of diseases such as image-guided radiotherapy and surgery. Although numerous medical image fusion methods have been proposed, most of these approaches are sensitive to the noise and usually lead to fusion image distortion, and image information loss. Furthermore, they lack universality when dealing with different kinds of medical images. In this paper, we propose a new medical image fusion to overcome the aforementioned issues of the existing methods. It is achieved by combining with rolling guidance filter (RGF) and spiking cortical model (SCM). Firstly, saliency of medical images can be captured by RGF. Secondly, a self-adaptive threshold of SCM is gained by utilizing the mean and variance of the source images. Finally, fused image can be gotten by SCM motivated by RGF coefficients. Experimental results show that the proposed method is superior to other current popular ones in both subjectively visual performance and objective criteria
    • …
    corecore