12 research outputs found

    Biologically effective dose in fractionated molecular radiotherapy-application to treatment of neuroblastoma with (131)I-mIBG.

    Get PDF
    In this work, the biologically effective dose (BED) is investigated for fractionated molecular radiotherapy (MRT). A formula for the Lea-Catcheside G-factor is derived which takes the possibility of combinations of sub-lethal damage due to radiation from different administrations of activity into account. In contrast to the previous formula, the new G-factor has an explicit dependence on the time interval between administrations. The BED of tumour and liver is analysed in MRT of neuroblastoma with (131)I-mIBG, following a common two-administration protocol with a mass-based activity prescription. A BED analysis is also made for modified schedules, when due to local regulations there is a maximum permitted activity for each administration. Modifications include both the simplistic approach of delivering this maximum permitted activity in each of the two administrations, and also the introduction of additional administrations while maintaining the protocol-prescribed total activity. For the cases studied with additional (i.e. more than two) administrations, BED of tumour and liver decreases at most 12% and 29%, respectively. The decrease in BED of the tumour is however modest compared to the two-administration schedule using the maximum permitted activity, where the decrease compared to the original schedule is 47%

    EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands

    Get PDF
    The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.</p

    EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres

    No full text
    The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient–relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments. Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available. The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time

    EANM dosimetry committee series on standard operational procedures : a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres

    Get PDF
    The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient–relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments. Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available. The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time

    Re : Tumor Targeting and Three-Dimensional Voxel-Based Dosimetry to Predict Tumor Response, Toxicity, and Survival after Yttrium-90 Resin Microsphere Radioembolization in Hepatocellular Carcinoma

    No full text
    Editor: We read with great interest the paper of Allimant et al (1) recently published in the Journal of Vascular and Interventional Radiology. Beside the clinical predictions of the paper, which look valuable, we are disappointed by the feeling that, motivated by the development of simple tools, mathematics becomes more and more overlooked in clinical dosimetry, resulting in hollow formalism. [...

    Variations in the practice of molecular radiotherapy and implementation of dosimetry : results from a European survey

    Get PDF
    Background: Currently, the implementation of dosimetry in molecular radiotherapy (MRT) is not well investigated, and in view of the Council Directive (2013/59/Euratom), there is a need to understand the current availability of dosimetry-based MRT in clinical practice and research studies. The aim of this study was to assess the current practice of MRT and dosimetry across European countries. Methods: An electronic questionnaire was distributed to European countries. This addressed 18 explicitly considered therapies, and for each therapy, a similar set of questions were included. Questions covered the number of patients and treatments during 2015, involvement of medical specialties and medical physicists, implementation of absorbed dose planning, post-therapy imaging and dosimetry, and the basis of therapy prescription. Results: Responses were obtained from 26 countries and 208 hospitals, administering in total 42,853 treatments. The most common therapies were I-131-NaI for benign thyroid diseases and thyroid ablation of adults. The involvement of a medical physicist (mean over all 18 therapies) was reported to be either minority or never by 32% of the responders. The percentage of responders that reported that dosimetry was included on an always/majority basis differed between the therapies and showed a median value of 36%. The highest percentages were obtained for Lu-177-PSMA therapy (100%), Y-90 microspheres of glass (84%) and resin (82%), I-131-mIBG for neuroblastoma (59%), and I-131-NaI for benign thyroid diseases (54%). The majority of therapies were prescribed based on fixed-activity protocols. The highest number of absorbed-dose based prescriptions were reported for Y-90 microsphere treatments in the liver (64% and 96% of responses for resin and glass, respectively), I-131-NaI treatment of benign thyroid diseases (38% of responses), and for I-131-mIBG treatment of neuroblastoma (18% of responses). Conclusions: There is a wide variation in MRT practice across Europe and for different therapies, including the extent of medical-physicist involvement and the implementation of dosimetry-guided treatments
    corecore