51 research outputs found

    Resource scheduling of workflow multi-instance migration based on the shuffled leapfrog algorithm

    Get PDF
    Purpose: When the workflow changed, resource scheduling optimization in the process of the current running instance migration has become a hot issue in current workflow flexible research; purpose of the article is to investigate the resource scheduling problem of workflow multi-instance migration. Design/methodology/approach: The time and cost relationships between activities and resources in workflow instance migration process are analyzed and a resource scheduling optimization model in the process of workflow instance migration is set up; Research is performed on resource scheduling optimization in workflow multi-instance migration, leapfrog algorithm is adopted to obtain the optimal resource scheduling scheme. An example is given to verify the validity of the model and the algorithm. Findings: Under the constraints of resource cost and quantity, an optimal resource scheduling scheme for workflow migration is found, ensuring a minimal running time and optimal cost. Originality/value: A mathematical model for resource scheduling of workflow multi-instance migration is built and the shuffled leapfrog algorithm is designed to solve the model.Peer Reviewe

    Potential of tropical maize populations for improving an elite maize hybrid

    Get PDF
    Identifying exotic maize (Zea mays L) populations possessing favorable new alleles lacking in local elite hybrids is an important strategy for improving maize hybrids. Selection of an appropriate breeding method will increase the chance of successfully transferring these favorable new alleles into elite inbred lines of local hybrids. The objec¬tives of this study were to: (i) evaluate 14 maize populations from CIMMYT and identify those containing favorable alleles for grain yield, ear length, ear diameter, kernel length, plant height, and ear height that are lacking in a local super hybrid [Jidan261 (W9706 × Ji853)], and to (ii) determine which inbred parent should be improved. These re¬sults showed that the populations Pob43, Pob501, and La Posta had positive and significant numbers of favorable alleles not found in hybrid W9706 × Ji853 that could be used for simultaneous improvement of its grain yield, ear length, and kernel length, and that population QPM-Y was also a good donor for improvement of ear diameter and kernel length in the hybrid. Based on allele frequencies in the two inbred lines and the donor population, when the populations Pob43, La Posta, Pob501, and QPM-Y were used as donors, inbred line W9706 would be improved by selfing the F1 of the cross W9706 × donor population. These results suggested that CIMMYT germplasm has potential to improve temperate elite hybrids. The relationship between GCA and SCA from a previous study and the parameters obtained from the Dudley method are discussed. The results showed that the values of Lplμ’ esti¬mates obtained by applying the Dudley method had the same trend as GCA effects for grain yield but a less clear trend for ear length, while the trends in the relationship value were reversed for SCA between these populations and Lancaster-derived lines

    Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.)

    Get PDF
    AbstractGray leaf spot (GLS), caused by Cercospora zeae-maydis, is an important foliar disease of maize (Zea mays L.) worldwide, resistance to which is controlled by multiple quantitative trait loci (QTL). To gain insights into the genetic architecture underlying the resistance to this disease, an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011. Subsequently, a genome-wide association study, using 41,101 single-nucleotide polymorphisms (SNPs), identified 51 SNPs significantly (P<0.001) associated with GLS resistance, which could be converted into 31 QTL. In addition, three candidate genes related to plant defense were identified, including nucleotide-binding-site/leucine-rich repeat, receptor-like kinase genes similar to those involved in basal defense. Two genic SNPs, PZE-103142893 and PZE-109119001, associated with GLS resistance in chromosome bins 3.07 and 9.07, can be used for marker-assisted selection (MAS) of GLS resistance. These results provide an important resource for developing molecular markers closely linked with the target trait, enhancing breeding efficiency

    VCAM1/VLA4 interaction mediates Ly6Clow monocyte recruitment to the brain in a TNFR signaling dependent manner during fungal infection

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Monocytes exist in two major populations, termed Ly6C^hi and Ly6C^low monocytes. Compared to Ly6C^hi monocytes, less is known about Ly6C^low monocyte recruitment and mechanisms involved in the recruitment of this subset. Furthermore, the role of Ly6C^low monocytes during infections is largely unknown. Here, using intravital microscopy, we demonstrate that Ly6C^low monocytes are predominantly recruited to the brain vasculature following intravenous infection with Cryptococcus neoformans, a fungal pathogen causing meningoencephalitis. The recruitment depends primarily on the interaction of VCAM1 expressed on the brain endothelium with VLA4 expressed on Ly6C^low monocytes. Furthermore, TNFR signaling is essential for the recruitment through enhancing VLA4 expression on Ly6C^low monocytes. Interestingly, the recruited Ly6C^low monocytes internalized C. neoformans and carried the organism while crawling on and adhering to the luminal wall of brain vasculature and migrating to the brain parenchyma. Our study reveals a substantial recruitment of Ly6C^low monocytes to the brain and highlights important properties of this subset during infection.https://doi.org/10.1371/journal.ppat.100836

    Age-Dependent Up-Regulation of HCN Channels in Spiral Ganglion Neurons Coincide With Hearing Loss in Mice

    Get PDF
    Age-related hearing loss (AHL) is the most common sensory disorder in the elderly population, and the etiologies are diverse. To understand the underlying mechanisms of AHL, one strategy is to identify correlates of the disease for comprehensive evaluation of treatment approaches. Dysfunction and degeneration of spiral ganglion neurons (SGNs) are major contributors to AHL. Previously, we showed that one of the changes in the aging auditory system is SGN excitability increase in mice. Since hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play important roles in determining neuronal excitability, we predicted that HCN channels in SGNs are involved in AHL. To investigate the contribution of HCN channels to AHL, we examined the expression and biophysical properties of HCN channels in SGNs from adult (2–3 months) and 11–12-month-old mice. We report a dramatic increase of HCN channel current (Ih) in SGNs in old mice (11–12 months old). The results matched well with increased expression of HCN1 and HCN2 subunits, suggesting that upregulation of HCN channels in SGNs is one of the important facets of the aging SGNs. Moreover, the activity of Ih produced a major impact on the firing properties of SGNs in older mice. The upregulation of Ih may contribute to AHL by regulating SGN excitability. We assessed whether increased SGNs excitability dovetail with neurodegeneration. Apoptosis-inducing factor (AIF)-mediated apoptosis in SGNs was observed in old mice and activation of HCN channels mediates AIF activation. Thus, these findings demonstrate stark correlation between age-dependent increased expression of HCN channels and Ih, and apoptosis in SGNs, which may contribute towards the varied mechanisms of AHL

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al

    An Improvement of Kwon-Song Protocol

    No full text
    Conference Name:International Conference on Future Electrical Power and Energy Systems (ICFEPES). Conference Address: Sanya, PEOPLES R CHINA. Time:FEB 21-22, 2012.The Internet has been population, which it was implement information technology, to every enterprise, also changed their contact mode of information flow style. Since public key conception was proposed, it had authentication function to secure while they are communication, and defense the data to leak based on stranger. In this article, we improved the Kwon-Song protocol that it avoids password guessing attack. (C) 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Hainan University

    Measuring urban vulnerability to climate change using an integrated approach, assessing climate risks in Beijing

    No full text
    This study is responding to the recommendation made by IPCC’s fifth Assessment Report on establishing a standard for measuring and reporting climate risk and vulnerability. It exemplifies the assessment of urban vulnerability to climate change by an integrated approach. The results indicate that Beijing is highly exposed to multiple climate threats in the context of global climate change, specifically urban heat waves, urban drainage floods and drought. Vulnerabilities to the climatic threats of heat waves, drainage floods and droughts have increased by 5%–15% during the period of 2008–2016 in Beijing. High vulnerabilities to both heat waves and drainage floods have been observed in the urban downtown area and high vulnerability to droughts have been observed in the outskirts. This vulnerability assessment, which addressed climatic threats, provides a holistic understanding of the susceptibility to climate change that could facilitate adaptation to climate change in the future. The developments of threats like flooding, heat waves and droughts are analyzed separately for 16 districts and an integrated vulnerability index for all of Beijing is provided as well
    corecore