Potential of tropical maize populations for improving an elite maize hybrid

Abstract

Identifying exotic maize (Zea mays L) populations possessing favorable new alleles lacking in local elite hybrids is an important strategy for improving maize hybrids. Selection of an appropriate breeding method will increase the chance of successfully transferring these favorable new alleles into elite inbred lines of local hybrids. The objec¬tives of this study were to: (i) evaluate 14 maize populations from CIMMYT and identify those containing favorable alleles for grain yield, ear length, ear diameter, kernel length, plant height, and ear height that are lacking in a local super hybrid [Jidan261 (W9706 × Ji853)], and to (ii) determine which inbred parent should be improved. These re¬sults showed that the populations Pob43, Pob501, and La Posta had positive and significant numbers of favorable alleles not found in hybrid W9706 × Ji853 that could be used for simultaneous improvement of its grain yield, ear length, and kernel length, and that population QPM-Y was also a good donor for improvement of ear diameter and kernel length in the hybrid. Based on allele frequencies in the two inbred lines and the donor population, when the populations Pob43, La Posta, Pob501, and QPM-Y were used as donors, inbred line W9706 would be improved by selfing the F1 of the cross W9706 × donor population. These results suggested that CIMMYT germplasm has potential to improve temperate elite hybrids. The relationship between GCA and SCA from a previous study and the parameters obtained from the Dudley method are discussed. The results showed that the values of Lplμ’ esti¬mates obtained by applying the Dudley method had the same trend as GCA effects for grain yield but a less clear trend for ear length, while the trends in the relationship value were reversed for SCA between these populations and Lancaster-derived lines

    Similar works