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Gray leaf spot (GLS), caused by Cercospora zeae-maydis, is an important foliar disease of maize
(Zeamays L.) worldwide, resistance towhich is controlled bymultiple quantitative trait loci (QTL).
To gain insights into the genetic architecture underlying the resistance to this disease, an
association mapping population consisting of 161 inbred lines was evaluated for resistance to
GLS in a plant pathology nursery at Shenyang in 2010 and 2011. Subsequently, a genome-wide
association study, using 41,101 single-nucleotide polymorphisms (SNPs), identified 51 SNPs
significantly (P < 0.001) associated with GLS resistance, which could be converted into 31 QTL. In
addition, three candidate genes related to plant defense were identified, including nucleotide-
binding-site/leucine-rich repeat, receptor-like kinase genes similar to those involved in basal
defense. Two genic SNPs, PZE-103142893 and PZE-109119001, associated with GLS resistance in
chromosome bins 3.07 and 9.07, can be used for marker-assisted selection (MAS) of GLS
resistance. These results provide an important resource for developing molecular markers
closely linked with the target trait, enhancing breeding efficiency.
© 2014 Crop Science Society of China and Institute of Crop Science, CAAS. Production and

hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Gray leaf spot (GLS) of maize (Zea mays L.), caused by the fungal
pathogen Cercospora zeae-maydis [1], is an environmentally
sensitive foliar disease requiring high humidity and moderate
temperatures [2]. In diseased leaves, gray to tan rectangular spots
(5 mm to 70 mm long by 2 mm to 4 mmwide) run parallel to the
leaf veins. Upon further expansion of lesions, the spots coalesce
and the entire leaves become blighted. Stalk deterioration and
severe lodging [3] can result in 20% to 60% loss of grain yield, even
as high as 100% loss during severe epiphytotics [4]. GLS has
become a major economic concern in many maize-growing
regions, both in China and worldwide [3,5–8]. Currently, host
resistance is expected to be themost cost-effective, efficient, and
acceptable method for controlling GLS [3,7,9]. However, most
maize germplasm that has been assessed is highly susceptible to
Cercospora zeae-maydis, with very little resistant germplasm
identified to date from tropical or subtropical maize [6,10]. Thus,
it is of increasing concern to identify and deploy heritable
resistance to GLS. Development of molecular markers closely
linked to underlying genes or quantitative trait loci (QTL) for the
trait and their application inmarker-assisted selection (MAS) can
enhance the efficiency of breeding activities in general [11,12],
and for disease resistance in particular.

Reports have shown that GLS resistance is quantitatively
inherited and is controlled primarily by additive gene action
[12–14].ManyQTLunderlyingGLS resistancehave been identified
across the 10 maize chromosomes in various mapping popula-
tions [9,12,15–20]. An integrated QTL map for GLS resistance in
maize was constructed by compiling 57 QTL from previous
studies using different mapping populations, from which 26
“real” QTL or meta-QTL (consensus QTL obtained by meta-
analysis) were identified across maize chromosomes using
meta-analysis approaches [8]. Furthermore, a major QTL on
chromosome 8 was fine-mapped to a 1.4-Mb interval using a
segregating population from the cross between a resistant
inbred, Y32, and a susceptible line, Q11 [4]. However, no QTL for
GLS resistance has been cloned to date. Moreover, because
GLS resistance is genetically complex and strongly influenced
by environment [12,20], genetic information derived from
biparental mapping populations that can be used for plant
improvement has been very limited. Often, either quantitative
information for traits that display simple inheritance, or QTL
explaining a substantial portion of phenotypic variation, can be
employed in MAS [21].

As an alternative to overcome some of the limitations of
biparental mapping, association mapping in current breeding
germplasmmay lead tomore effectivemarker strategies for crop
improvement [22,23],withhigher resolutionandgreater capacity
for identifying favorable genetic loci responsible for traits of
interest [24,25]. To date, association mapping has been used
successfully to identify QTL or genes for the most prevalent
diseases in maize at the whole-genome level, including South-
ern corn leaf blight [26], Northern corn leaf blight [27], and head
smut [28]. However, a genome-wide association study (GWAS)
for GLS resistance has not yet been reported with Chinesemaize
germplasm. Accordingly, the objectives in this study were to (1)
assess phenotypic variation among 161 Chinese maize inbred
lines under artificial inoculationwith apropagule suspension, (2)
identify genetic loci conferring GLS resistance by performing a
genome-wide association study of GLS resistance using 41,101
SNP markers in the population, and (3) identify candidate genes
for GLS resistance. The results obtained here will help to drive
the breeding process towards improvement of GLS resistance.
2. Materials and methods

2.1. Plant materials and field trials

An association mapping panel with 161 Chinese maize inbred
lines was planted in a plant pathology nursery at Shenyang,
Liaoning Province, China (41.48° N, 123.25° E), in 2010 and
2011, using complete randomized blocks with two replicates.
Each plot was planted in single rows, 0.67 m apart and 4.5 m
long, with a total of 20 plants per row. Among these lines, the
inbred lines Shen 137 and Dan 340 were used as resistant and
susceptible controls, respectively [15].

2.2. Phenotypic evaluation for resistance to GLS and
statistical analysis

Theassociationmappingpanelwas artificially inoculatedduring
the bugle stage (V9–V11 developmental stage) with a 10-mL
propagule suspension containing 2.5 × 104 conidia following the
method of Dong et al. [10]. During the maize milky maturity
stage, the disease reaction on each plant was scored on a scale
with five levels (G1, G3, G5, G7, and G9) that represent the
percentage of the infected foliar area (PIFA) as follows: G1 ≤ 5%
PIFA and absence of symptoms; G3 = 6%–10% PIFAwith few and
sparse lesions; G5 = 11%–30% PIFA with lesions reaching the ear
leaf and a few lesions occurring on the leaves above the ear;
G7 = 31%–70% PIFA with lesions reaching the leaves above the
ear; G9 ≥ 71% PIFA with premature plant death before physio-
logical maturity (black layer formation in kernels) [4,10].

GLS resistancewas evaluatedbyPIFA for all plants in each row
and the average score for the rowcomprised the phenotypic data.
All the phenotypic data collected in 2010 and 2011 were
summarized as percentages (e.g. PIFA). An arcsine transforma-
tion was performed and statistical tests were conducted using
Statistical Analysis System (SAS) software [29]. A PROC
UNIVARIATE normal plot was used to test whether the data
was normally distributed. A standard analysis of variance
(ANOVA) was performed using PROC GLM to determine variation
in disease response. The general linear model procedure was
used to analyze the effects of environments, block, inbred lines,
and the interactions between these factors. Estimates of the
variance components associated with all model terms were
calculated using the PROCMIXED option. Heritabilities (h2) of GLS
resistance were calculated as a ratio of the estimated genetic
variance to the phenotypic variance of a population mean using
the formula described by Hallauer and Miranda [30]:

h2 ¼ σ2
g= σ2

g þ σ2
ge=eþ σ2=r � e

� �
;

where σ2g, σ2ge, and σ2 are estimates of genotypic,
genotype × environment interaction and error variances,
and e and r are the numbers of environments and replications
per environment, respectively. Spearman's rank correlations
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for GLS resistance with PIFA for these 2 years were calculated
using SAS software [29].

2.3. Genotyping with SNPs and SNP filtering

DNA from each of the panel lines was extracted using amodified
CTAB extraction procedure [31], andDNAquality for each sample
was carefully checked using electrophoresis and a spectropho-
tometer (Nanodrop 2000, Thermo Scientific). These lines were
genotyped with 56,110 evenly spaced SNP markers and 984
negative controls, selected from several public and private
sources (Illumina, Inc.), covering the entire maize genome
according to theB73genome reference sequence. SNPgenotyping
was performed using the MaizeSNP50 BeadChip processed by
Emei Tongde (Beijing). A total of 41,101 SNPs were selected by
filtering with stringent quality criteria for further analysis [32].

2.4. Genotype–phenotype association mapping

The extent of linkage disequilibrium (LD) was characterized
using HAPLOVIEW v4.0 [33]. Population structure and
kinship information for the lines in the panel were
estimated with a mixed linear model using the software
STRUCTURE version 2.3 [34] and 4000 SNPs (minor allele
frequency (MAF) ≥ 0.2). STRUCTURE was run three times
with 500,000 burn-in iterations followed by 500,000 MCMC
(Markov chain Monte Carlo) iterations to test for the
presence of five genotypic subgroups (K = 5), as determined
in a previous study [35]. The panel was classified into five
genotypic subgroups: PB (inbred lines derived from modern
U.S. hybrids in China), Lan (Lancaster Sure Crop), LRC (Lvda
Red Cob, a Chinese landrace and its derivatives), SPT
(Si-ping-tou, a Chinese landrace and its derivatives), and
Mixed (inbred lines derived from modern US hybrids in
China and Reid group). Because GLS resistance in the PB
subgroup differed significantly from the other subgroups,
lines belonging to the PB group could be eliminated from the
panel of 161 Chinese maize inbred lines and used to form a
new panel for mapping. As a result, a total of four sets of
data, respectively designated as E1a, E1b, E2a, and E2b (i.e.,
2010 (161), 2010 (135), 2011 (161), and 2011 (135), respective-
ly) were used to identify SNPs significantly associated with
GLS resistance.

The mixed linear model (MLM) implemented in the TASSEL
programversion 3.0 [36] was used for a genome-wide scan of loci
governing resistance to GLS with 41,101 SNPs (MAF ≥ 0.05), and
SNPs with P ≤ 0.001 were declared to be significantly associated
with GLS resistance.

To compare linkage mapping with association mapping of
GLS resistance, significant marker information in the same
linkage group was converted into QTL information in reference
to a report of 2011 [37]. These QTL, together with QTL previously
reported in biparental mapping populations, were then
integrated with the genetic map IBM Neighbors 2008, following
Shi et al. [8]

2.5. Candidate gene analysis

(1) Significant SNPs that were repeatedly detected in different
experiments (herein, E1a, E1b, E2a, and E2b were regarded as
different experiments) were selected to identify candidate
genes underlying GLS resistance. (2) To scan for potential
genes within a sequence region containing consensus signifi-
cant SNPs, the 60-bp source sequences of these “consensus”
significant SNPs were used to perform nucleotide BLAST
searches against the B73 RefGen_v2 (MGSC) (http://blast.
maizegdb.org/home.php?a=BLAST_UI). Local LD blocks that
contained consensus significant SNPs were selected as target
sequence regions to scan for potential genes, using theGenScan
web server at http://genes.mit.edu/GENSCAN.html. Local LD
blocks were defined by the confidence interval method of
Gabriel et al. [38] using Haploview 4.0 [33]. (3) To identify
candidate genes for GLS resistance, predicted peptides of
potential genes were used to search for conserved domains at
the NCBI website http://www.ncbi.nlm.nih.gov/Structure/cdd/
wrpsb.cgi. Genes with disease resistance-related annotations
were evaluated as candidate genes for GLS resistance.
3. Results

3.1. Phenotypic variation for GLS resistance

The resistant control Shen 137 proved highly resistant to GLS,
with average scores of grade 3 (G3) in 2010 and G1 in 2011,
respectively, whereas the susceptible line Dan 340 was highly
susceptible to GLS and was rated as G9 in both years (Fig. 1-A),
indicating an appropriate level of inoculation in this study. The
significant (P < 0.0001) correlation (R2 = 0.864) (Table 1) between
the phenotypic data among the 2 years indicated that GLS
resistance among these 161 lines was highly consistent across
years. A quantitative distribution of the phenotypes among 161
lines in each year (Fig. 1-A) suggests that maize resistance to GLS
is quantitatively inherited. The genotypic variances among 161
lines were highly significant (P < 0.0001) in each year, and the
broad-sense heritability of GLS resistance was 0.88 (Table 1),
revealing the presence of predominantly genetically controlled
resistance in this panel.

Phenotypic differences in the GLS PIFA among these five
subgroups were extremely significant (P < 0.0001). The PB sub-
group, with the lowest PIFA, exhibited themost resistance to GLS
(Fig. 1-B), and differed significantly from the other subgroups
according to the Student–Newman–Keuls multiple range test
(SNK) (Fig. 1-B), suggesting either that the resistance genes
originate from the PB subgroup, or thatmore genetic information
about GLS resistance is available in the PB subgroup, and that
fitting population structure and kinship matrix information into
the model is necessary for association mapping of this trait.
3.2. Genome-wide association study of GLS resistance

In these four experiments, a total of 51 SNPs across 10
chromosomes were significantly associated with PIFA
(P < 0.001) (Fig. 2; Table 2). Given that some significant SNPs
fell into LD blocks (Table 2), 38 polymorphic sites (including
six singleton loci) were actually identified, andwere allocated
to 31 QTL regions across all maize chromosomes. These
polymorphisms were named using prefix “qGLS” plus the
chromosome bin identifier number (Table 2).

http://blast.maizegdb.org/home.php?a=BLAST_UI
http://blast.maizegdb.org/home.php?a=BLAST_UI
http://genes.mit.edu/GENSCAN.html
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi


Fig. 1 – Distribution of GLS resistance in this maize diversity panel. A: Distribution of average GLSPIFA across two
environments for 161 maize inbred lines; B: Phenotypic variation in GLS resistance within each of five maize subgroups.
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Four of the 31 QTL, including qGLS3.01, qGLS4.11, qGLS7.03-1,
and qGLS10.05, were detected in three experiments (Table 2). In
two experiments, nineQTLwere detected (Fig. 2; Table 2), among
which qGLS1.01 (i.e. SYN200081) was detected in E1b and E2b (i.e.
experiments using inbred lines, excluding those from the PB
subgroup) (Fig. 2-A, B), suggesting either that favorable allelic
variation was not available in the PB subgroup, or that the
frequency of favorable alleles in the PB subgroup was too low to
be detected. In addition, qGLS7.02 was detected only in E1
(including E1a and E1b) (Fig. 2-C, D), while other QTL, including
qGLS1.05, qGLS3.05, qGLS3.07, qGLS5.05, qGLS8.01, and qGLS9.07,
were detected only in E2 (including E2a and E2b).

3.3. Candidate gene analysis

Sixteen significant SNPs that were repeatedly detected were
selected to identify candidate genes underlying GLS resistance
(Table 2). Three candidate genes, designated as GLScgcb03071,
Table 1 – Statistics for GLS severity evaluated in 161maize
inbred lines during 2010 and 2011 growing seasons.

Year Mean Standard
deviation

Coefficient of
variation

h2

2010 0.515 0.264 51.365 0.88
2011 0.536 0.276 51.565 0.87
GLScgcb03072, and GLScgcb0907, in chromosome bins 3.07 and
9.07were identified as conferring GLS resistance (Fig. 3).

Among these candidates, GLScgcb03071 is a coiled-coil (CC)
domain-containing protein whose genomic-sequence is separat-
ed from the significant SNP PZE-103142893 in bin 3.07 by a
physical interval of 8.6 kb. The other candidate gene in chromo-
some bin 3.07, GLScgcb03072, which contains a serine/threonine
kinase (STK) catalytic region, harbored the significant SNP
PZE-103142893. Interestingly, this SNP occurred in the fourth
exon of GLScgcb03072. The third candidate gene, GLScgcb0907,
was identified by its co-location with the significant SNP
PZE-109119001 in chromosome bin 9.07 (Fig. 3). Its protein
sequence homolog from Ricinus communis is a virion-binding
protein. Notably, some proteins with such conserved domains
have been shown to be directly or indirectly involved in the
detection of pathogen effectors and activation of defense signal
transduction by plants.
4. Discussion

4.1. Relevant parameters to GWAS in the study

Sample size has been one of the most critical influences on the
power of GWAS to detect genes [39]. In this study,we used a total
of 161 maize inbred lines originating in different corn planting
regions inChina, including theNorthern Spring Corn Region, the



Fig. 2 – Pairwise comparison of GWAS of GLS resistance with a mixed linear model in different trials. E1 and E2 represent
experiments of 2010 and 2011, respectively; the letters a and b indicate the different population sizes and compositions (“a”
represents the panel including the PB group, and “b” represents the panel excluding the PB group). Markers on different
chromosomes are indicated by different colors, and chromosomes 1 to 10 are shown in order from left to right. At the bottom of
the graphic, LD patterns are shown for multiple SNPs found to associate with GLS resistance in certain genomic regions, and
their haplotypes.
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Huang-Huai-Hai Summer Corn Region, and the Southwest Hilly
Corn Region, which together comprise the Corn Belt of China
[40]. This panel of 161 Chinese maize inbred lines exhibited a
high degree of phenotypic diversity, although only a minority of
these lines (about 16%) were evaluated for resistance to GLS
disease. Using this panel, 51 SNPs significantly associated with
GLS resistance (P < 0.001) were identified. The P-value cutoff
used in this study for GLS resistance (0.001) was not as strict as
that (0.0001) imposed in other GWAS [27,32,37,41]. However, the
standard we applied has also been used in some studies [42–45].
Moreover, in the present study, QTL for resistance to GLS that
had been identified in biparental mapping populations were
integrated with the genetic map IBM Neighbors 2008, as a
reference criterion for distinguishing true from spurious associ-
ations. For example, Pozar et al. [17] identified a QTL for GLS
resistance in bin 3.07 using near-isogenic lines derived from a

image of Fig.�2


Table 2 – QTL/SNPs for PIFA identified in this study, using phenotypic information collected for 161 and 135 inbred lines tested in 2010 and 2011.

QTL SNP Bin Physical
position

Allele Allele frequency 2010 (161) 2010 (135) 2011 (161) 2011 (135)

P r2 (%) P r2 (%) P r2 (%) P r2 (%)

qGLS 1.01 SYN20881a 1.01 11,914,709 AA/GG 0.38/0.62 7.1 × 10−4 9.07 8.2 × 10−4 8.66
qGLS 1.05-1 PZE-101097594 1.05 90,945,315 AA/GG 0.82/0.18 7.1 × 10−4 7.74
qGLS 1.05-2 PZE-101101408 1.05 97,320,462 AA/GG 0.28/0.72 6.6 × 10−4 8.75

PZE-101101434a 1.05 97,337,186 AA/GG 0.32/0.68 1.5 × 10−4 9.47 7.0 × 10−4 8.91
qGLS 2.06 PZE-102123716 2.06 168,939,118 AA/GG 0.63/0.37 6.7 × 10−4 8.96
qGLS 2.07 PZE-102150401 2.07 194,191,603 AA/GG 0.58/0.42 9.9 × 10−4 9.24
qGLS 2.08 SYN10660 2.08 209,511,480 AA/GG 0.65/0.35 5.9 × 10−4 7.72
qGLS 3.01 PZE-103006822a 3.01 3,784,477 AA/GG 0.61/0.39 4.9 × 10−4 7.96 1.4 × 10−4 11.64 3.6 × 10−4 9.93

PZE-103006823a 3.01 3,784,526 AA/CC 0.39/0.61 4.9 × 10−4 7.96 1.4 × 10−4 11.64 3.6 × 10−4 9.93
qGLS 3.04 PZE-103038470 3.04 33,172,435 AA/GG 0.27/0.73 7.9 × 10−4 7.32
qGLS 3.05 PZE-103098157a 3.05 157,101,755 AA/GG 0.63/0.37 7.2 × 10−4 7.43 5.2 × 10−4 9.36

PZD00037.1 3.05 157,732,369 AA/CC 0.73/0.27 6.5 × 10−4 7.56
PZE-103098863 3.05 157,920,323 AA/GG 0.73/0.27 6.5 × 10−4 7.56
SYN15478 3.05 161,035,765 AA/GG 0.59/0.41 8.2 × 10−4 7.27

qGLS 3.06-1 PZD00027.2 3.06 169,757,331 AA/GG 0.66/0.34 2.6 × 10−4 10.63
qGLS 3.06-2 PZE-103132492 3.06 186,635,604 AA/GG 0.68/0.32 5.6 × 10−4 9.86
qGLS 3.07 PZE-103142893a 3.07 196,578,413 AA/GG 0.32/0.68 3.5 × 10−4 10.46 3.8 × 10−4 12.38
qGLS 4.04 SYNGENTA1981 4.04 25,192,445 AA/GG 0.76/0.24 3.2 × 10−4 10.31
qGLS 4.08 PZE-104110785 4.08 186,022,362 AA/GG 0.89/0.11 6.6 × 10−4 7.58
qGLS 4.11 SYN24294a 4.11 243,783,746 AA/GG 0.27/0.73 4.3 × 10−4 9.82 5.4 × 10−4 7.81 3.5 × 10−4 9.95
qGLS 5.05 SYN16061a 5.05 178,950,419 AA/GG 0.38/0.62 2.3 × 10−4 8.88 4.9 × 10−4 9.44
qGLS 6.00 PZE-106000325 6.00 702,334 AA/CC 0.53/0.47 5.8 × 10−4 7.71
qGLS 6.05-1 PZE-106073523 6.05 129,373,812 AA/GG 0.25/0.75 5.5 × 10−4 12.04
qGLS 6.05-2 SYN26162 6.05 146,548,071 AA/GG 0.45/0.55 2.6 × 10−4 10.61
qGLS 7.02 PZE-107040293a 7.02 67,970,430 AA/GG 0.45/0.55 5.2 × 10−4 7.86 1.5 × 10−4 11.51

(continued on next page)
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Table 2 (continued)

QTL SNP Bin Physical
position

Allele Allele frequency 2010 (161) 2010 (135) 2011 (161) 2011 (135)

P r2 (%) P r2 (%) P r2 (%) P r2 (%)

PZE-107040331a 7.02 68,050,246 AA/CC 0.44/0.56 3.2 × 10−4 8.64 9.0 × 10−5 12.54
PZE-107040334 7.02 68,050,356 AA/GG 0.58/0.42 3.1 × 10−4 10.37
PZE-107040338 7.02 68,050,676 AA/CC 0.42/0.58 3.1 × 10−4 10.37
PZE-107040370a 7.02 68,121,109 AA/GG 0.45/0.55 5.2 × 10−4 7.86 1.5 × 10−4 11.51

qGLS 7.03-1 PZE-107086511 7.03 136,155,325 AA/CC 0.25/0.75 5.9 × 10−4 7.71
PZE-107091680 7.03 141,007,072 AA/GG 0.76/0.24 3.5 × 10−4 8.38
PZE-107091705 7.03 141,022,709 AA/GG 0.40/0.60 5.3 × 10−4 9.32
PZE-107091745a 7.03 141,029,174 AA/CC 0.57/0.43 6.0 × 10−5 10.62 4.1 × 10−4 8.15
PZE-107091772 7.03 141,129,636 AA/CC 0.17/0.83 9.8 × 10−4 7.08
PZE-107091797 7.03 141,177,791 AA/GG 0.83/0.17 9.8 × 10−4 7.08
PZE-107091801 7.03 141,179,468 AA/GG 0.17/0.83 9.8 × 10−4 7.08
PZE-107091803 7.03 141,180,621 AA/GG 0.17/0.83 9.8 × 10−4 7.08
SYN38494 7.03 141,187,791 AA/CC 0.17/0.83 9.8 × 10−4 7.08
SYN38495 7.03 141,187,793 AA/CC 0.17/0.83 9.8 × 10−4 7.08

qGLS 7.03-2 SYN34849 7.03 152,695,327 AA/CC 0.12/0.88 2.4 × 10−4 8.89
SYN34850 7.03 152,695,341 AA/GG 0.12/0.88 2.4 × 10−4 8.89

qGLS 8.01 SYN10053a 8.01 1,816,317 AA/CC 0.09/0.91 3.1 × 10−4 8.51 2.7 × 10−4 10.35
qGLS 8.03 PZE-108028005 8.03 28,557,135 AA/GG 0.63/0.37 7.8 × 10−4 9.10
qGLS 8.05 PZE-108075552a 8.05 129,767,067 AA/GG 0.52/0.48 6.3 × 10−4 9.69 4.1 × 10−4 12.26
qGLS 8.06 PZE-108108866 8.06 160,936,029 AA/GG 0.49/0.51 8.0 × 10−4 8.70
qGLS 9.03 PZE-109033067 9.03 40,231,252 AA/TT 0.51/0.49 3.2 × 10−4 12.64
qGLS 9.04 SYN22541 9.04 116,639,359 AA/GG 0.60/0.40 9.7 × 10−4 7.07
qGLS 9.07 PZE-109119001a 9.07 149,528,095 AA/CC 0.86/0.14 2.8 × 10−4 8.64 7.8 × 10−4 8.74
qGLS 10.04 PZE-110058320 10.0 112,038,689 AA/GG 0.58/0.42 7.6 × 10−4 7.73
qGLS 10.05 PUT-163a-7144327 10.1 128,341,485 AA/GG 0.34/0.66 9.9 × 10−4 7.06

PZE-110072280a 10.1 128,500,652 AA/GG 0.30/0.70 5.5 × 10−4 7.79 1.1 × 10−4 9.81 3.3 × 10−4 10.03

a SNPs marked with “a” were selected for further search for candidate genes, SNPs with underlining in the same QTL region belong to a LD block.
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Fig. 3 – Information about candidate genes derived from SNPs significantly associated with GLS resistance identified in this
study.
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cross between two inbred lines, MON323 and MON402, which
was integrated with the genetic map IBM Neighbors 2008 in this
study. As shown in Fig. 4, in the present study, there was an
overlapping region between the QTL and the local LD block that
harbors the significant SNP PZE-103142893 in bin 3.07. Thus, we
did not consider the association of SNP PZE-103142893 with GLS
resistance to be spurious, despite its P-value (0.0003) greater than
0.0001.

Population structure is revealed by the presence of system-
atic differences in allele frequencies between subpopulations
that may have arisen due to differences in ancestry, and that
may lead to spurious allelic associations in association studies
as a result of LD between alleles and nearby polymorphisms
[46]. To reduce these false associations, an MLM controlling for
both population structure and relative kinship is usually used in
association studies. In this model, population structure is fitted
as a covariate that represents the proportional contribution
fromancestor populations to each individual line [36]. However,
the use of different types of markers to characterize the
structure of a population can result in different conclusions
[47]. SNPs are used to infer population structure; however,
because most SNPs are relatively uninformative markers with
only two alleles [48,49], only a small fraction of them are highly
diagnostic of population structure [47,50]. Increasing the
number of SNPs can compensate for their low information
content and enhance their power to detect population
structure [48,50–52]. Still, 10,000 SNP simulations designed to
estimate the power of sets of SNPs have identified incorrect
numbers of subpopulations in a structure, owing to high
proportions of simulated SNP loci with low minor allele
frequencies (~20% singletons) [52]. Upon filtering of singletons
from SNP data sets (1000 SNPs, MAF > 0.1), a better estimate of
the number (or simulated number) of populations can bemade.

In the present study, 4000 SNPs distributed evenly across the
entiremaize genome, four times thenumber of SNPs (1000 SNPs)
in the above mentioned simulation [52], were used to analyze
the population stratification of 161 inbred lines. To eliminate the
potential effects of a high proportion of SNPs with low MAF,
these 4000 SNPswere selected to haveMAF greater than 0.2. This
threshold for selectionofmarkerswithnormal allele frequencies
has also beenused in other studies [28,32]. Using these 4000 SNPs
withMAF ≥ 0.2, the 161maize inbred lines in this study could be
divided into five groups, including PB, Lan, LRC, SPT and Mixed,
which were roughly consistent with their pedigrees. Similar
conclusions about thenumber of distinct subgroups in this panel
have been drawn in previous studies [35,53–56]. For example, in
2012, a total set of 820 Chinese maize inbred lines was divided
into five groups, using 40 core maize genome-wide SSRs
developed for fingerprinting and uniformity analysis of Chinese
maize varieties [35]. In an earlier study, commonly used inbred

image of Fig.�3


Fig. 4 – QTL for GLS resistance identified in other studies using biparental mapping populations, compared with the QTL
identified in this study using GWAS.
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lines that represent maize genetic diversity in China were also
divisible into six groups, including PA, BSSS, PB, Lan, LRC, and
SPT [57]. But the close genetic relationship between PA and BSSS
[58] and their overlapping geographical origins [56] suggest that it
is reasonable and credible that only five groupswere identified in
our study. Moreover, the GLS resistance of maize inbred lines
within the PB subgroup differed significantly from that of other
subgroups (P < 0.0001) (Fig. 1-B). To define a population with
more randomly distributed alleles for association mapping, 26
inbred lines belonging to the PB subgroup were excluded from
the association panel. However, for retaining germplasm diver-
sity and also as a control, the PB subgroup was included as
a separate association mapping population. A mixed linear
model controlling population structure and kinship matrix was
employed to minimize spurious associations.

4.2. QTL identified by GWAS

Some QTL detected in this study, including qGLS2.07, qGLS3.04,
qGLS3.05, qGLS3.06, qGLS3.07, qGLS4.04, qGLS5.05, qGLS6.05,
qGLS7.02, qGLS7.03, qGLS8.06, and qGLS9.04 overlapped with QTL
regions identified in previous studies using biparental mapping
populations [8,15,17,18]. However, some QTL regions relevant to
GLS resistance are reported here for the first time, including
qGLS1.01, which was detected in E1, and qGLS8.03, which was
detected in E2 (Fig. 2; Table 2). This finding suggests that GWAS is
apowerful approachnot only for confirmingpreviously described
regions but also for identifying new regions associated with GLS
resistance.

For all SNPs significantly associated with GLS resistance,
the highest additive-effect estimate was only 0.59. Each of
the QTL defined by these SNPs was accordingly regarded as
relatively minor. In this study, each identified QTL ex-
plained less than 13% of the phenotypic variation for GLS
PIFA when estimated with individual experiments
(Table 2), whereas a QTL on chromosome 1 with r2 values
as high as 47% had been identified using a population derived
from line Va14 and B73 [9]. Compared with previous QTL
mapping experiments for GLS using biparental populations in
maize, GWAS has advantages for identification of QTL with
minor effects. These advantages may be attributed to the lower
phenotypic and greater genotypic variation in these 161 maize
inbred lines [37]. Because biparental mapping usually employs
phenotypically diverse parents, and progeny populations with
allele frequencies close to 0.5, it is expected to be most effective
in identifying large-effect QTL.

image of Fig.�4
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Association mapping based on LD has been proved to be
effective for revealing the genetic basis of important traits in
maize with high resolution [59], as shown on chromosomes 3,
5, 7, 8, and 9 (Fig. 4), by markers such as PZE-103142893
(qGLS3.07), and PZE-109119001 (qGLS3.07) within candidate
genes in chromosome bins 3.07 and 9.07, respectively (Fig. 3).

4.3. Candidate genes identified by GWAS

Previous studies suggested that SNPs significantly associated
with phenotypic variance could be located very closely to the
causative genetic variants [60,61]. In the present study, three
candidate genes, GLScgcb03071, GLScgcb03072, and GLScgcb0907,
were identified by their conserved regions including CC and STK,
which are shared bymany R genes cloned to date [62,63]. The CC
domain is a conserved motif contained in some nucleotide-
binding site/leucine rich repeat (NBS-LRR) proteins (CC-NBS-LRR)
that are involved in pathogen sensing and host defense [64–66].
These types of domains have been identified in proteins
involved in resistance to fungal diseases including Dm3, which
confers Bremia lactucae resistance in lettuce [67]; I2,which confers
Fusarium oxysporum resistance in tomato [68,69]; Mla, which
confers Blumeria graminis resistance in barley [37]; Pib, which
confersMagnaporthe grisea resistance in rice [70]; and Rp1, which
confers Puccinia sorghi resistance inmaize [71]. Proteins contain-
ing STKdomains, such as the rice bacterial blight resistance gene
product Xa21 [72], constitute one category of receptor protein
kinases (RPK) [73] that play important roles in plant–pathogen
interaction and defense responses [73–76]. Collectively, the
candidate genes we have identified suggest that joint linkage–
linkage disequilibrium mapping is a powerful tool for revealing
candidate genes for complex traits. However, it should be
emphasized that these candidate genes should be further
validated via other methods.

There are two main reasons why only three candidate
genes were identified in this study. First, the sequence lengths
of regions within the LD blocks containing significant SNPs
that were scanned for potential genes were variable. For
example, the length of the genomic sequence derived from
PZE-103142492 in chromosome bin 3.06 was only 2583 bp.
Second, not all conserved domains and motifs useful for
identifying candidate genes conferring GLS resistance have
yet been identified. To date, most R genes that have been
cloned share a limited number of conserved domains and
motifs, such as NBS, LRR, and PK motifs, transmembrane
domains, leucine zippers, and Toll-interleukin-1 motifs [65].

4.4. Development of functional markers underlying
GLS resistance

Given that GLS resistance in this study was dominated by
several loci with relatively small effects, how can these
small-effect QTL be used to improve germplasm for resistance
to GLS? Unlike large-effect QTL that are easier both to identify
and to maintain in breeding populations by phenotypic
selection, small-effect QTL are more likely to be lost from
breeding populations without the use of MAS [37]. Thus,
development of molecular markers closely linked to underly-
ing genes or QTL for traits, especially functional markers, will
be necessary for accumulation and maintenance of many of
these small-effect QTL to achieve an acceptable level of
resistance within breeding populations. Functional marker
development also requires allele sequences of functionally
characterized genes from which polymorphic, functional
motifs affecting plant phenotypes can be identified [77]. In
this study, significant SNPs identified using GWAS, especially
those within candidate genes for GLS resistance such as
PZE-103142893 and PZE-109119001 can provide an important
reference for functional marker development. These
gene-derived functional markers would be the ideal tools for
MAS breeding of GLS disease resistance in maize.
5. Conclusions

In this study, 41,101 SNPs and phenotypic data for GLS
resistance collected in 2010 and 2011 were used for a GWAS.
As a result, 51 SNPs were significantly (P < 0.001) associated
with GLS resistance, and could be converted into 31 QTL. Three
candidate genes are associated with plant defense, including
NBS-LRR and STK genes similar to those known to be involved
in basal defense [73–76]. Two genic SNPs (PZE-103142893 and
PZE-109119001) in chromosome bins 3.07 and 9.07, respectively,
associated with GLS resistance, could be useful for MAS
breeding of GLS resistance in maize.
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