96 research outputs found

    Noise properties in the ideal Kirchhoff-Law-Johnson-Noise secure communication system

    Get PDF
    In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We answer this question and in the same time we provide a theoretical basis to analyze real systems as well

    Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise

    Full text link
    First, we show a new inexpensive defense against intruders and the man-in-the-middle attack in the Kirchhoff's-loop-Johnson-like-noise (KLJN) cipher. Then instead of point-to-point communication, we propose a high efficiency, secure network. The (in the idealistic case totally secure) classical network is based on an improved version of the KLJN cipher. The network consists of two parallel networks: i) a chain-like network of securely communicating, electrically isolated Kirchhoff-loops with Johnson-like noise and driven by a specific switching process of the resistances; ii) and a regular non-secure data network with a Coordinator-server. If the classical network is fast enough, the chain-like network of N communicators can generate and share an N bit long secret key within a single clock period of the ciphers and that implies a significant speed-up compared to the point-to-point key exchanges used by quantum communication or RSA-like key exchange methods. This is a teleportation-type multiple telecloning of the classical information bit because the information transfer can take place without the actual presence of the information bit at the intermediate points of the network. With similar quantum schemes the telecloning of classical bits via quantum communicator networks without telecloning the quantum states is also possible.Comment: Quantum-based network application added. 13 page

    What kind of noise guarantees security for the Kirchhoff-Loop-Johnson-Noise key exchange?

    Get PDF
    This article is a supplement to our recent one about the analysis of the noise properties in the Kirchhoff-Law-Johnson-Noise (KLJN) secure key exchange system [Gingl and Mingesz, PLOS ONE 9 (2014) e96109, doi:10.1371/journal.pone.0096109]. Here we use purely mathematical statistical derivations to prove that only normal distribution with special scaling can guarantee security. Our results are in agreement with earlier physical assumptions [Kish, Phys. Lett. A 352 (2006) 178-182, doi: 10.1016/j.physleta.2005.11.062]. Furthermore, we have carried out numerical simulations to show that the communication is clearly unsecure for improper selection of the noise properties. Protection against attacks using time and correlation analysis is not considered in this paper

    Power spectral density estimation for wireless fluctuation enhanced gas sensor nodes

    Get PDF
    Fluctuation enhanced sensing (FES) is a promising method to improve the selectivity and sensitivity of semiconductor and nanotechnology gas sensors. Most measurement setups include high cost signal conditioning and data acquisition units as well as intensive data processing. However, there are attempts to reduce the cost and energy consumption of the hardware and to find efficient processing methods for low cost wireless solutions. In our paper we propose highly efficient signal processing methods to analyze the power spectral density of fluctuations. These support the development of ultra-low-power intelligent fluctuation enhanced wireless sensor nodes while several further applications are also possible

    Improved head-controlled TV system produces high-quality remote image

    Get PDF
    Manipulator operator uses an improved resolution tv camera/monitor positioning system to view the remote handling and processing of reactive, flammable, explosive, or contaminated materials. The pan and tilt motions of the camera and monitor are slaved to follow the corresponding motions of the operators head

    Improved electromechanical master-slave manipulator

    Get PDF
    Electric master-slave manipulator uses force multiplication and allows the operator to remotely control the slave arm. Both the master and slave arms execute seven distinct motions by a specially designed force-reflecting servo having a one to one correspondence between the motion at the master and slave

    Spectra for the product of Gaussian noises

    Get PDF
    Products of Gaussian noises often emerge as the result of non-linear detection techniques or as a parasitic effect, and their proper handling is important in many practical applications, including in fluctuation-enhanced sensing, indoor air or environmental quality monitoring, etc. We use Rice's random phase oscillator formalism to calculate the power density spectra variance for the product of two Gaussian band-limited white noises with zero-mean and the same bandwidth W. The ensuing noise spectrum is found to decrease linearly from zero frequency to 2W, and it is zero for frequencies greater than 2W. Analogous calculations performed for the square of a single Gaussian noise confirm earlier results. The spectrum at non-zero frequencies, and the variance of the square of a noise, is amplified by a factor two as a consequence of correlation effects between frequency products. Our analytic results is corroborated by computer simulations.Comment: submitted for publicatio
    corecore