10 research outputs found

    Applications of functional near-infrared spectroscopy in non-drug therapy of traditional Chinese medicine: a review

    Get PDF
    Non-drug therapies of traditional Chinese medicine (TCM), including acupuncture, massage, tai chi chuan, and Baduanjin, have emerged as widespread interventions for the treatment of various diseases in clinical practice. In recent years, preliminary studies on the mechanisms of non-drug therapies of TCM have been mostly based on functional near-infrared spectroscopy (fNIRS) technology. FNIRS is an innovative, non-invasive tool to monitor hemodynamic changes in the cerebral cortex. Our review included clinical research conducted over the last 10 years, establishing fNIRS as a reliable and stable neuroimaging technique. This review explores new applications of this technology in the field of neuroscience. First, we summarize the working principles of fNIRS. We then present preventive research on the use of fNIRS in healthy individuals and therapeutic research on patients undergoing non-drug therapies of TCM. Finally, we emphasize the potential for encouraging future advancements in fNIRS studies to establish a theoretical framework for research in related fields

    Optimizing interlaminar toughening of carbon-based filler/polymer nanocomposites by machine learning

    No full text
    Currently, most designs for interlayer toughening of carbon-based filler/polymer nanocomposites are highly dependent on experimental iterative trial and error, and there is no rational design framework. This work uses machine learning to build a fast and accurate predictive model and assess the extent to which key features affect performance, giving researchers ideas for designing new materials and greatly improving efficiency. A training database is built by first collecting the features of the domain that affect the interlaminar performance. A stacking model fusion of the three machine learning models was then performed to construct a highly accurate fast prediction model. Besides, the importance of key features is evaluated during model training using the Random Forest Algorithm (RFA). Finally, by predicting the performance of materials and analyzing the importance of characteristics to guide material preparation, the development cycle is shortened and costs are reduced

    The Hd0053 gene of Haemophilus ducreyi encodes an α2,3-sialyltransferase

    No full text
    Haemophilus ducreyi is a Gram-negative bacterium that causes chancroid, a sexually transmitted genital ulcer disease. Different lipooligosaccharide (LOS) structures have been identified from H. ducreyi strain 35000, including those sialylated glycoforms. Surface LOS of H. ducreyi is considered an important virulence factor that is involved in ulcer formation, cell adhesion, and invasion of host tissue. Gene Hd0686 of H. ducreyi, designated lst (for lipooligosaccharide sialyltransferase), was identified to encode an α2,3-sialyltransferase that is important for the formation of sialylated LOS. Here, we show that Hd0053 of H. ducreyi genomic strain 35000HP, the third member of the glycosyltransferase family 80 (GT80), also encodes an α2,3-sialyltransferase that may be important for LOS sialylation

    Low Light Image Enhancement Based on Multi-Scale Network Fusion

    No full text
    At present, researchers have made great progress in the research of object detection, however, these studies mainly focus on the object detection of images under normal lighting, ignoring the target detection under low light. And images in the fields of automatic driving at night and surveillance are usually obtained in low-light environments. These images have problems such as poor brightness, low contrast, and obvious noise, which lead to a large amount of information loss in the image. And the performance of object detection in low light is reduced. In this paper, we propose a low-light image enhancement method based on multi-scale network fusion to solve the problems of images in low-light environments. Aiming at the problem that the effective information of low-light images is relatively small, we propose a preprocessing method for image nonlinear transformation and fusion, which improves the amount of available information in the light image. Then, in order to obtain a better enhancement effect, a multi-scale feature fusion method is proposed, which fuses features from different resolution levels in the network. The details of low-light areas in the image are improved, and the problem of feature loss caused by too deep network layers is solved. The experimental results show that our proposed method can achieve better enhancement effects on different datasets compared with the current mainstream methods. The average recall value of the object detection with our method is improved by 38.25%, which shows that our proposed method is effective and can promote the development of autonomous driving, monitoring, and other fields
    corecore