1,358 research outputs found

    Apoptotic Cell Death and Inhibition of Wnt/β-Catenin Signaling Pathway in Human Colon Cancer Cells by an Active Fraction (HS7) from Taiwanofungus camphoratus

    Get PDF
    Aberrant activation of Wnt/β-catenin signaling plays an important role in the development of colon cancer. HS7 is an active fraction extracted from Taiwanofungus camphoratus, which had been widely used as complementary medicine for Taiwan cancer patients in the past decades. In this study, we demonstrated the effects of HS7 on the growth inhibition, apoptosis induction, and Wnt/β-catenin signaling suppression in human colon cancer cells. HS7 significantly inhibited proliferation of HT29, HCT116, and SW480 colon cancer cells in a dose- and time-dependent manner. The apoptosis induction was evidenced by DNA fragmentation and subG1 accumulation, which was associated with increased Bax/Bcl-2 ratio, activation of caspase-3 and cleavage of PARP. By using Tcf-dependent luciferase activity assay, HS7 was found to inhibit the β-catenin/Tcf transcriptional activities. In addition, HS7 strongly suppressed the binding of Tcf complexes to its DNA-binding site shown in electrophoretic mobility shift assay. This inhibition was further confirmed by the decreased protein levels of Tcf-4 and β-catenin. The β-catenin/Tcf downstream target genes, such as survivin, c-myc, cyclin D1, MMP7, and MT1-MMP involved in apoptosis, invasion, and angiogenesis were also diminished as well. These results indicate that Taiwanofungus camphoratus may provide a benefit as integrative medicine for the treatment of colon cancer

    Clinicopathologic features and outcomes following surgery for pancreatic adenosquamous carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pancreatic adenosquamous carcinoma (ASC) is a rare pancreatic malignancy subtype. We investigated the clinicopathological features and outcome of pancreatic ASC patients after surgery.</p> <p>Methods</p> <p>The medical records of 12 patients with pancreatic ASC undergoing surgical treatment (1993 to 2006) were retrospectively reviewed. Survival data of patients with stage IIB pancreatic adenocarcinoma and ASC undergoing surgical resection were compared.</p> <p>Results</p> <p>Symptoms included abdominal pain (91.7%), body weight loss (83.3%), anorexia (41.7%) and jaundice (25.0%). Tumors were located at pancreatic head in 5 (41.7%) patients, tail in 5 (41.7%), and body in 4 (33.3%). Median tumor size was 6.3 cm. Surgical resection was performed on 7 patients, bypass surgery on 3, and exploratory laparotomy with biopsy on 2. No surgical mortality was identified. Seven (58.3%) and 11 (91.7%) patients died within 6 and 12 months of operation, respectively. Median survival of 12 patients was 4.41 months. Seven patients receiving surgical resection had median survival of 6.51 months. Patients with stage IIB pancreatic ASC had shorter median survival compared to those with adenocarcinoma.</p> <p>Conclusion</p> <p>Aggressive surgical management does not appear effective in treating pancreatic ASC patients. Strategies involving non-surgical treatment such as chemotherapy, radiotherapy or target agents should be tested.</p

    Vulnerability of welders to manganese exposure--a neuroimaging study

    Get PDF
    Increased manganese (Mn) exposure is known to cause cognitive, psychiatric and motor deficits. Mn exposure occurs in different occupational settings, where the airborne Mn level and the size of respirable particulates may vary considerably. Recently the importance of the role of the cerebral cortex in Mn toxicity has been highlighted, especially in Mn-induced neuropsychological effects. In this study we used magnetic resonance imaging (MRI) to evaluate brain Mn accumulation using T1 signal intensity indices and to examine changes in brain iron content using T2* contrast, as well as magnetic resonance spectroscopy (MRS) to measure exposure-induced metabolite changes non-invasively in cortical and deep brain regions in Mn-exposed welders, Mn-exposed smelter workers and control factory workers with no measurable exposure to Mn. MRS data as well as T1 signal intensity indices and T2* values were acquired from the frontal cortex, posterior cingulate cortex, hippocampus, and thalamus. Smelters were exposed to higher air Mn levels and had a longer duration of exposure, which was reflected in higher Mn levels in erythrocytes and urine than in welders. Nonetheless, welders had more significant metabolic differences compared to controls than did the smelter workers, especially in the frontal cortex. T1 hyperintensities in the globus pallidus were observed in both Mn-exposed groups, but only welders showed significantly higher thalamic and hippocampal T1 hyperintensities, as well as significantly reduced T2* values in the frontal cortex. Our results indicate that (1) the cerebral cortex, in particular the frontal cortex, is clearly involved in Mn neurotoxic effects and (2) in spite of the lower air Mn levels and shorter duration of exposure, welders exhibit more extensive neuroimaging changes compared to controls than smelters, including measurable deposition of Mn in more brain areas. These results indicate that the type of exposure (particulate sizes, dust versus fume) and route of exposure play an important role in the extent of Mn-induced toxic effects on the brain

    The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.

    Get PDF
    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation

    Irreducible Elbow Dislocation Associated with Hill–Sachs-like Lesion over the Capitellum

    Get PDF
    Irreducible dislocation of the elbow is an uncommon event. We present the case of a posterolateral elbow dislocation after a fall injury in a 67-year-old woman. A closed reduction performed in the emergency department was unsuccessful since the limited passive range of motion resulted in difficulty to perform longitudinal traction and flexion. Computed tomography images showed that the posterolateral aspect of the capitellum was impacted by the tip of the coronoid process, thus appearing similar to the Hill–Sachs lesion in the humeral head. Subsequent open reduction of the elbow revealed the dislocation to be irreducible since the tip of the coronoid process had wedged into a triangular Hill–Sachs-like lesion in the capitellum. The joint was reduced by providing distal traction on the forearm, and main fragments were disengaged using digital pressure. At the 3-month follow-up, the patient reported no dislocations, and had an acceptable range of motion. Thus, we propose that to avoid iatrogenic injury to the joint or other nearby structures, irreducible dislocations should not be subjected to repeated manipulation

    Highly sensitive analysis of the anti-tumor agent 1-[4-(furo[2,3-b]-quinolin-4-ylamino)phenyl]ethanone in rat plasma by high-performance liquid chromatography using electrochemical detection

    Get PDF
    Abstract A sensitive high-performance liquid chromatography method with electrochemical detection was developed for the purpose of determining the concentration of the new anti-tumor agent 1-[4-(furo[2,3-b]-quinolin-4-ylamino)phenyl]ethanone (FQPE) in rats. The plasma samples were spiked with the internal standard diclofenac and extracted using dichloromethane. A C 18 250 mm × 4 mm column was used for the separation of analyte with a mobile phase consisting of 50% acetonitrile and 50% pH 3.0 of sodium 1-pentansulfonate solution at a flow rate of 1.0 mL/min. FQPE was detected by electrochemical detector at 1.0 V and 20 nA. Intra-day and inter-day precision and accuracy were acceptable down to the limit of quantization of 1 ng/mL. The lower limit of detection (LOD) was 0.5 ng/mL. The pharmacokinetic parameters of FQPE in rats after intravenous administration of 2.1 and 4.2 mg/kg were determined. The apparent volume of distribution, half-life of elimination, and clearance showed no significant difference between the two dosages. The area under the plasma concentration time curve increased proportionally with dose. The half-life of FQPE was prolonged about 2.4-fold, compared with amsacrine

    Differential expression of SUMO-specific protease 7 variants regulates epithelial–mesenchymal transition

    Get PDF
    Two Sentrin/small ubiquitin-like modifier (SUMO)-specific protease 7 (SENP7) variants are naturally expressed in breast epithelia. Breast cancer (BCa) onset down-regulates the short SENP7 splice variant (SENP7S) and enhances the long transcript (SENP7L). Here, we show that SENP7L induction promotes gene expression profiles that favor aberrant proliferation and initiate epithelial–mesenchymal transition (EMT). SENP7L exhibits an interaction domain for the epigenetic remodeler heterochromatin protein 1 α (HP1α) and isopeptidase activity against SUMO-modified HP1α. Loss of this interaction domain, as observed with SENP7S, favors HP1α SUMOylation. SUMOylated HP1α is enriched at E2F-responsive and mesenchymal gene promoters, silences transcription of these genes, and promotes cellular senescence. Elevated SENP7L renders HP1α hypo-SUMOylated, which relieves transcriptional repression of the same genes and concurrently decreases transcription of epithelial-promoting genes via an HP1α-independent mechanism. Consequently, SENP7L levels correlate with EMT, motility, and invasiveness of BCa cells. Stable knockdown of elevated SENP7L levels lessens the dissemination of highly metastatic BCa cells to the lungs from primary implantation sites in in vivo studies. Thus, differential splicing of the SENP7 regulates either tumor suppression or progression

    Direct Radiofrequency Application Improves Pain and Gait in Collagenase-Induced Acute Achilles Tendon Injury

    Get PDF
    Radiofrequency (RF) is often used as a supplementary and alternative method to alleviate pain for chronic tendinopathy. Whether or how it would work for acute tendon injury is not addressed in the literatures. Through detailed pain and gait monitoring, we hypothesized that collagenase-induce acute tendinopathy model may be able to answer these questions. Gait parameters, including time, distance, and range of motion, were recorded and analyzed using a walking track equipped with a video-based system. Expression of substance P (SP), calcitonin gene related peptide (CGRP), and galanin were used as pain markers. Beta-III tubulin and Masson trichrome staining were used as to evaluate nerve sprouting, matrix tension, and degeneration in the tendon. Of fourteen analyzed parameters, RF significantly improved stance phase, step length, preswing, and intermediary toe-spread of gait. Improved gait related to the expression of substance P, CGRP, and reduced nerve fiber sprouting and matrix tension, but not galanin. The study indicates that direct RF application may be a valuable approach to improve gait and pain in acute tendon injury. Altered gait parameters may be used as references to evaluate therapeutic outcomes of RF or other treatment plan for tendinopathy

    Monitoring melanoma recurrence with circulating tumor DNA: a proof of concept from three case studies

    Get PDF
    Background: A significant number of melanoma patients experience recurrence to distant sites, despite having had surgical treatment of the primary lesion, with curative intent. Monitoring of patients for early evidence of disease recurrence would significantly improve management of the disease, allowing timely therapeutic intervention. Circulating tumor DNA (ctDNA) is becoming a well-recognized biomarker for monitoring malignancies and has, in a few studies, been shown to signify disease recurrence earlier than conventional methods. Methods: We performed a retrospective analysis of plasma ctDNA using droplet digital PCR (ddPCR) in 30 primary melanoma patients with tumors harboring BRAF, NRAS or TERT promoter mutations. Mutant specific ctDNA, measured during clinical disease course, was compared with disease status in patients with confirmed disease recurrence (n = 3) and in those with no evidence of disease recurrence (n = 27). Results: Mutant specific ctDNA was detected in all three patients with disease recurrence at the time of clinically confirmed progression. In one case, plasma ctDNA detection preceded clinical identification of recurrence by an interval of 4 months. CtDNA was not detected in patients who were asymptomatic and had no radiological evidence of recurrence. Conclusions: This study demonstrates promising results for the use of ctDNA as an informative monitoring tool for melanoma patients having undergone tumor resection of an early stage primary tumor. The clinical utility of ctDNA for monitoring disease recurrence warrants investigation in prospective studies as it may improve patient outcome
    corecore