1,771 research outputs found

    Atom-by-Atom Substitution of Mn in GaAs and Visualization of their Hole-Mediated Interactions

    Full text link
    The discovery of ferromagnetism in Mn doped GaAs [1] has ignited interest in the development of semiconductor technologies based on electron spin and has led to several proof-of-concept spintronic devices [2-4]. A major hurdle for realistic applications of (Ga,Mn)As, or other dilute magnetic semiconductors, remains their below room-temperature ferromagnetic transition temperature. Enhancing ferromagnetism in semiconductors requires understanding the mechanisms for interaction between magnetic dopants, such as Mn, and identifying the circumstances in which ferromagnetic interactions are maximized [5]. Here we report the use of a novel atom-by-atom substitution technique with the scanning tunnelling microscope (STM) to perform the first controlled atomic scale study of the interactions between isolated Mn acceptors mediated by the electronic states of GaAs. High-resolution STM measurements are used to visualize the GaAs electronic states that participate in the Mn-Mn interaction and to quantify the interaction strengths as a function of relative position and orientation. Our experimental findings, which can be explained using tight-binding model calculations, reveal a strong dependence of ferromagnetic interaction on crystallographic orientation. This anisotropic interaction can potentially be exploited by growing oriented Ga1-xMnxAs structures to enhance the ferromagnetic transition temperature beyond that achieved in randomly doped samples. Our experimental methods also provide a realistic approach to create precise arrangements of single spins as coupled quantum bits for memory or information processing purposes

    Implementing an Evidence-Based COPD Hospital Discharge Protocol: A Narrative Review and Expert Recommendations

    Get PDF
    Discharge bundles, comprising evidence-based practices to be implemented prior to discharge, aim to optimise patient outcomes. They have been recommended to address high readmission rates in patients who have been hospitalised for an exacerbation of chronic obstructive pulmonary disease (COPD). Hospital readmission is associated with increased morbidity and healthcare resource utilisation, contributing substantially to the economic burden of COPD. Previous studies suggest that COPD discharge bundles may result in fewer hospital readmissions, lower risk of mortality and improvement of patient quality of life. However, evidence for their effectiveness is inconsistent, likely owing to variable content and implementation of these bundles. To ensure consistent provision of high-quality care for patients hospitalised with an exacerbation of COPD and reduce readmission rates following discharge, we propose a comprehensive discharge protocol, and provide evidence highlighting the importance of each element of the protocol. We then review care bundles used in COPD and other disease areas to understand how they affect patient outcomes, the barriers to implementing these bundles and what strategies have been used in other disease areas to overcome these barriers. We identified four evidence-based care bundle items for review prior to a patient’s discharge from hospital, including (1) smoking cessation and assessment of environmental exposures, (2) treatment optimisation, (3) pulmonary rehabilitation, and (4) continuity of care. Resource constraints, lack of staff engagement and knowledge, and complexity of the COPD population were some of the key barriers inhibiting effective bundle implementation. These barriers can be addressed by applying learnings on successful bundle implementation from other disease areas, such as healthcare practitioner education and audit and feedback. By utilising the relevant implementation strategies, discharge bundles can be more (cost-)effectively delivered to improve patient outcomes, reduce readmission rates and ensure continuity of care for patients who have been discharged from hospital following a COPD exacerbation

    One-carbon metabolism in cancer

    Get PDF
    Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism

    A complementary method for detecting qi vacuity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qi vacuity (QV) is defined by traditional Chinese medicine as a loss of energy in the human body. An objective method for detecting QV was not available until recently, however. The automatic reflective diagnosis system (ARDK) is a device that detects human bioenergy through measuring skin conductance at 24 special acupoints on the wrists and ankles.</p> <p>Methods</p> <p>This study used the ARDK to measure skin conductance on 193 patients with QV and 89 sex- and age-matched healthy controls to investigate whether the device is useful in detecting QV. Patients diagnosed with QV have three or more of five symptoms or signs; symptom severity is measured on 5 levels and scored from 0 to 4 points. We compared the difference in the mean ARDK values between patients with QV and healthy controls, and further used linear regression analysis to investigate the correlation between the mean ARDK values and QV scores in patients diagnosed with QV.</p> <p>Results</p> <p>The mean ARDK values in patients with QV (30.2 ± 16.8 μA) are significantly lower than those of healthy controls (37.7 ± 10.8 μA; <it>P </it>< 0.001). A negative correlation was found between the mean ARDK values and QV scores (<it>r </it>coefficient = -0.61; <it>P </it>< 0.001). After adjusting for age, the decreased mean ARDK values in patients with QV showed a significant correlation with the QV scores.</p> <p>Conclusion</p> <p>These results suggest that the mean ARDK values reflect the severity of QV in patients diagnosed with the disorder. They also suggest that the bioenergy level of the human body can be measured by skin conductance. ARDK is a safe and effective complementary method for detecting and diagnosing QV.</p

    Impaired Resting-State Functional Integrations within Default Mode Network of Generalized Tonic-Clonic Seizures Epilepsy

    Get PDF
    Generalized tonic-clonic seizures (GTCS) are characterized by unresponsiveness and convulsions, which cause complete loss of consciousness. Many recent studies have found that the ictal alterations in brain activity of the GTCS epilepsy patients are focally involved in some brain regions, including thalamus, upper brainstem, medial prefrontal cortex, posterior midbrain regions, and lateral parietal cortex. Notably, many of these affected brain regions are the same and overlap considerably with the components of the so-called default mode network (DMN). Here, we hypothesize that the brain activity of the DMN of the GTCS epilepsy patients are different from normal controls, even in the resting state. To test this hypothesis, we compared the DMN of the GTCS epilepsy patients and the controls using the resting state functional magnetic resonance imaging. Thirteen brain areas in the DMN were extracted, and a complete undirected weighted graph was used to model the DMN for each participant. When directly comparing the edges of the graph, we found significant decreased functional connectivities within the DMN of the GTCS epilepsy patients comparing to the controls. As for the nodes of the graph, we found that the degree of some brain areas within the DMN was significantly reduced in the GTCS epilepsy patients, including the anterior medial prefrontal cortex, the bilateral superior frontal cortex, and the posterior cingulate cortex. Then we investigated into possible mechanisms of how GTCS epilepsy could cause the reduction of the functional integrations of DMN. We suggested the damaged functional integrations of the DMN in the GTCS epilepsy patients even during the resting state, which could help to understand the neural correlations of the impaired consciousness of GTCS epilepsy patients

    Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study

    Get PDF
    &lt;p&gt;&lt;b&gt;Background&lt;/b&gt; Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methods&lt;/b&gt; We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, &#8805;2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Results&lt;/b&gt; Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 &#8804; P &#8804; .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 &#8804; P &#8804; .04), hair color (.006 &#8804; P &#8804; .06), and number of nevi (6.9 × 10−6 &#8804; P &#8804; .02).&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusion&lt;/b&gt; Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.&lt;/p&gt

    Text Mining Improves Prediction of Protein Functional Sites

    Get PDF
    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Mild Joint Symptoms Are Associated with Lower Risk of Falls than Asymptomatic Individuals with Radiological Evidence of Osteoarthritis

    Get PDF
    Osteoarthritis (OA) exacerbates skeletal muscle functioning, leading to postural instability and increased falls risk. However, the link between impaired physical function, OA and falls have not been elucidated. We investigated the role of impaired physical function as a potential mediator in the association between OA and falls. This study included 389 participants [229 fallers (≥2 falls or one injurious fall in the past 12 months), 160 non-fallers (no history of falls)], age (≥65 years) from a randomized controlled trial, the Malaysian Falls Assessment and Intervention Trial (MyFAIT). Physical function was assessed using Timed Up and Go (TUG) and Functional Reach (FR) tests. Knee and hip OA were diagnosed using three methods: Clinical, Radiological and Self-report. OA symptom severity was assessed using the Western Ontario and McMaster Universities Arthritis Index (WOMAC). The total WOMAC score was categorized to asymptomatic, mild, moderate and severe symptoms. Individuals with radiological OA and ‘mild’ overall symptoms on the WOMAC score had reduced risk of falls compared to asymptomatic OA [OR: 0.402(0.172–0.940), p = 0.042]. Individuals with clinical OA and ‘severe’ overall symptoms had increased risk of falls compared to those with ‘mild’ OA [OR: 4.487(1.883–10.693), p = 0.005]. In individuals with radiological OA, mild symptoms appear protective of falls while those with clinical OA and severe symptoms have increased falls risk compared to those with mild symptoms. Both relationships between OA and falls were not mediated by physical limitations. Larger prospective studies are needed for further evaluation
    corecore