119 research outputs found

    Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications

    Get PDF
    Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith

    Plant productivity and characterization of zeoponic substrates after three successive crops of radish

    Get PDF
    The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops

    Something’s missing from my education: Using a cross sectional survey to examine the needs and interest of Canadian medical students relating to their roles as teachers and educators

    Get PDF
    Background: Current theory in medical education emphasizes engaging learners as educators while tailoring teaching to their learning needs. However, little is known about learners’ perceptions of their proposed roles as teachers and educators.Methods: Canadian medical students were invited to complete an English language online questionnaire structured to include: teaching experience, participation and/or awareness of teacher development at their school and awareness and/or interest in further training in medical education. The survey was developed by the Canadian Association for Medical Education (CAME) Membership Subcommittee, and distributed via the Canadian Federation of Medical Students (CFMS) email list and the CAME twitter account in March 2014.Results: Of the 169 undergraduate medical student respondents, 36% (n=61) reported a lack of prior teaching experience and 45% (n=73) were unsure if their school provided teaching instruction. Overall, 91% (n=150) indicated that they planned to incorporate teaching or medical education into their future careers.Conclusion: While the majority of medical student respondents are expecting or planning to teach, most report not having access to adequate training through medical school. Further effort is necessary to support medical students as teachers to prepare them for increased teaching responsibilities as residents and to expose them to potential careers in medical education.

    Identification of Iron-Bearing Phases on the Martian Surface and in Martian Meteorites and Analogue Samples by Moessbauer Spectroscopy

    Get PDF
    The Moessbauer spectrometers on the Mars Exploration Rovers (MER) Spirit (Gusev Crater) and Opportunity (Meridiani Planum) have each analyzed more than 100 targets during their ongoing missions (>1050 sols). Here we summarize the Fe-bearing phases identified to date and compare the results to Moessbauer analyses of martian meteorites and lunar samples. We use lunar samples as martian analogues because some, particularly the low-Ti Apollo 15 mare basalts, have bulk chemical compositions that are comparable to basaltic martian meteorites [1,2]. The lunar samples also provide a way to study pigeonite-rich samples. Pigeonite is a pyroxene that is not common in terrestrial basalts, but does often occur on the Moon and is present in basaltic martian meteorite

    A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater

    Get PDF
    Modern Martian dust is similar in composition to the global soil unit and bulk basaltic Mars crust, but it is enriched in S and Cl. The Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory Curiosity rover analyzed air fall dust on the science observation tray (o-tray) in Gale Crater to determine dust oxide compositions. The o-tray dust has the highest concentrations of SO3 and Cl measured in Mars dust (SO3 8.3%; Cl 1.1 wt %). The molar S/Cl in the dust (3.35 ± 0.34) is consistent with previous studies of Martian dust and soils (S/Cl = 3.7 ± 0.7). Fe is also elevated ~25% over average Mars soils and the bulk crust. These enrichments link air fall dust with the S-, Cl-, and Fe-rich X-ray amorphous component of Gale Crater soil. Dust and soil have the same S/Cl, constraining the surface concentrations of S and Cl on a global scale

    NASA's Desert RATS Science Backroom: Remotely Supporting Planetary Exploration

    Get PDF
    NASA's Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable. In recent years, a D-RATS science backroom has conducted science operations and tested specific operational approaches. Approaches from the Apollo, Mars Exploration Rovers and Phoenix missions were merged to become the baseline for these tests. In 2010, six days of lunar-analog traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. In 2011, a variety of exploration science scenarios that tested operations for a near-earth asteroid using several small exploration vehicles and a single habitat. Communications between the ground and the crew in the field used a 50-second one-way delay, while communications between crewmembers in the exploration vehicles and the habitat were instantaneous. Within these frameworks, the team evaluated integrated science operations management using real-time science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results. Exploration scenarios for Mars may include architectural similarities such as crew in a habitat communicating with crew in a vehicle, but significantly more autonomy will have to be given to the crew rather than step-by-step interaction with a science backroom on Earth

    Discovery of a strain-stabilised smectic electronic order in LiFeAs

    Get PDF
    CT, CMY and PW acknowledge funding from EPSRC through EP/L505079/1 and EP/I031014/1. Research at UBC was supported by the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and the Stewart Blusson Quantum Matter Institute.In many high temperature superconductors, small orthorhombic distortions of the lattice structure result in surprisingly large symmetry breaking of the electronic states and macroscopic properties, an effect often referred to as nematicity. To directly study the impact of symmetry-breaking lattice distortions on the electronic states, using low-temperature scanning tunnelling microscopy we image at the atomic scale the influence of strain-tuned lattice distortions on the correlated electronic states in the iron-based superconductor LiFeAs, a material which in its ground state is tetragonal with four-fold (C4) symmetry. Our experiments uncover a new strain-stabilised modulated phase which exhibits a smectic order in LiFeAs, an electronic state which not only breaks rotational symmetry but also reduces translational symmetry. We follow the evolution of the superconducting gap from the unstrained material with C4 symmetry through the new smectic phase with two-fold (C2) symmetry and charge-density wave order to a state where superconductivity is completely suppressed.Publisher PDFPeer reviewe

    An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    Get PDF
    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) Survey will observe 500 nearby main sequence and sub-giant stars (100 of each of the A, F, G, K and M spectral classes) to the 850 micron extragalactic confusion limit to search for evidence of submillimeter excess, an indication of circumstellar material. The survey distance boundaries are 8.6, 16.5, 22, 25 and 45 pc for M, K, G, F and A stars, respectively, and all targets lie between the declinations of -40 deg to 80 deg. In this survey, no star will be rejected based on its inherent properties: binarity, presence of planetary companions, spectral type or age. This will be the first unbiased survey for debris disks since IRAS. We expect to detect ~125 debris disks, including ~50 cold disks not detectable in current shorter wavelength surveys. A substantial amount of complementary data will be required to constrain the temperatures and masses of discovered disks. High resolution studies will likely be required to resolve many of the disks. Therefore, these systems will be the focus of future observational studies using a variety of observatories to characterize their physical properties. For non-detected systems, this survey will set constraints (upper limits) on the amount of circumstellar dust, of typically 200 times the Kuiper Belt mass, but as low as 10 times the Kuiper Belt mass for the nearest stars in the sample (approximately 2 pc).Comment: 11 pages, 7 figures (3 color), accepted by the Publications of the Astronomical Society of the Pacifi

    Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    Get PDF
    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests <0.1 percent perchlorate and ppm levels of organic carbon at landing site 1 and 2 [2]. The suggestion of perchlorate in the Viking sites [2] has been challenged on the grounds that the detected compounds (CH3Cl and CH2Cl2) were carried from Earth [4]. Recently the Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of perchlorates. Even if the source of the organic carbon detected is still unknown, the chlorine source was likely Martian. Two mechanisms have been hypothesized for the formation of soil perchlorate: (1) Atmospheric oxidation of chlorine; and (2) UV photooxidation of chlorides catalyzed by mineral catalysts [7]. The presence of soil perchlorates in the Martian surface has important implications for the detection of organics [2], carbonates [8] and nitrates [9] by SAM

    Evolved Gas Analyses of Sedimentary Rocks and Eolian Sediment in Gale Crater, Mars: Results of the Curiosity Rover's Sample Analysis at Mars Instrument.

    Get PDF
    The Sample Analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, SO2, NO, CO2, CO, O2, and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. The SAM-EGA heats samples to 870C and measures evolved gas releases as function of temperature. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. CO2 and CO evolved at similar temperatures suggesting that as much as 2373 820 gC/g may occur as organic carbon in the Gale Crater rock record while relatively higher temperature CO2 detections are consistent with carbonate (<0.70 0.1 wt % CO3). Evolved NO amounts up to 0.06 0.03 wt % NO3 have been detected while O2 detections suggests chlorates and/or perchlorates (0.05 to 1.05 wt % ClO4) are present. Evolution of SO2 indicated the presence of crystalline and/or poorly crystalline Fe and Mg sulfate and possibly sulfide. Evolved H2O (0.9 - 2.5 wt% H2O) was consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2S detections suggest that reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, and carbonate). SAM results coupled with CheMin mineralogical and Alpha-Particle X-ray Spectrometer elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population
    corecore