3,453 research outputs found

    Functional consequences of cell type-restricted expression of laminin alpha-5 in mouse placental labyrinth and kidney glomerular capillaries

    Get PDF
    The labyrinth is the highly vascularized part of the rodent placenta that allows efficient transfer of gases, nutrients, wastes, and other molecules between the maternal and embryonic circulations. These two blood compartments are separated by blastocyst-derived trophoblasts and endothelial cells with an intervening basement membrane that contains laminin and other typical basement membrane components. Previously we reported that the labyrinth of laminin α5 knockout (LMα5−/−) embryos exhibits reduced vascularization and detachment of endothelial cells from the basement membrane, which normally contains LMα5. As very little is known about the origin of this vascular basement membrane, we investigated the cellular requirements for LMα5 expression in the mouse placental labyrinth. By fluorescence-activated cell sorting and RT-PCR we confirmed that both endothelial cells and trophoblasts normally express LMα5. Using Cre-loxP technology and doxycycline-mediated gene expression, we generated genetically mosaic placentas in which either the trophoblasts or the endothelial cells, but not both, expressed LMα5. We found that the overall architecture of the labyrinth was normal as long as one of these two cell types expressed LMα5, even if it was transgene-derived human laminin α5. These results suggest that laminin trimers containing α5 that are synthesized and secreted by endothelium or by trophoblasts are capable of integrating into the basement membrane and promoting normal vascularization of the placenta. Additional studies showed that endothelium-expressed human LMα5 can support vascularization of the kidney glomerulus, consistent with previous studies using a tissue grafting approach

    Epithelial laminin α5 is necessary for distal epithelial cell maturation, VEGF production, and alveolization in the developing murine lung

    Get PDF
    AbstractLaminin α5 is prominent in the basement membrane of alveolar walls, airways, and pleura in developing and adult lung. Targeted deletion of laminin α5 in mice causes developmental defects in multiple organs, but embryonic lethality has precluded examination of the latter stages of lung development. To identify roles for laminin α5 in lung development, we have generated an inducible lung epithelial cell-specific Lama5 null (SP-CLama5fl/−) mouse through use of the Cre/loxP system, the human surfactant protein C promoter, and the reverse tetracycline transactivator. SP-CLama5fl/− embryos exposed to doxycycline from E6.5 died a few hours after birth. Compared to control littermates, SP-CLama5fl/− lungs had dilated, enlarged distal airspaces, but basement membrane ultrastructure was preserved. Distal epithelial cell differentiation was perturbed, with a marked reduction of alveolar type II cells and a virtual absence of type I cells. Cell proliferation was reduced and apoptosis was increased. Capillary density was diminished, and this was associated with a decrease in total lung VEGF production. Overall, these findings indicate that epithelial laminin α5, independent of its structural function, is necessary for murine lung development, and suggest a role for laminin α5 in signaling pathways that promote alveolar epithelial cell differentiation and VEGF expression

    Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols

    Get PDF
    Fatty acid transport protein 4 (FATP4) is an acyl-CoA synthetase that is required for normal permeability barrier in mammalian skin. FATP4 (SLC27A4) mutations cause ichthyosis prematurity syndrome, a nonlethal disorder. In contrast, Fatp4-/- mice die neonatally from a defective barrier. Here we used electron microscopy and lipidomics to characterize defects in Fatp4-/- mice. Mutants showed lamellar body, corneocyte lipid envelope, and cornified envelope abnormalities. Lipidomics identified two lipids previously speculated to be present in mouse epidermis, sphingosine β-hydroxyceramide and monoacylglycerol; mutants displayed decreased proportions of these and the two ceramide classes that carry ultralong-chain, amide-linked fatty acids (FAs) thought to be critical for barrier function, unbound ω-O-acylceramide and bound ω-hydroxyceramide, the latter constituting the major component of the corneocyte lipid envelope. Other abnormalities included elevated amounts of sphingosine α-hydroxyceramide, phytosphingosine non-hydroxyceramide, and 1-O-acylceramide. Acyl chain length alterations in ceramides also suggested roles for FATP4 in esterifying saturated non-hydroxy and β-hydroxy FAs with at least 25 carbons and saturated or unsaturated ω-hydroxy FAs with at least 30 carbons to CoA. Our lipidomic analysis is the most thorough such study of the Fatp4-/- mouse skin barrier to date, providing information about how FATP4 can contribute to barrier function by regulating fatty acyl moieties in various barrier lipids

    Efficient Parallel Statistical Model Checking of Biochemical Networks

    Full text link
    We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture

    Fatty acid transport protein 4 (FATP4) prevents light-induced degeneration of cone and rod photoreceptors by inhibiting RPE65 isomerase

    Get PDF
    Although rhodopsin is essential for sensing light for vision, it also mediates light-induced apoptosis of photoreceptors in mouse. RPE65, which catalyzes isomerization of all-trans retinyl fatty acid esters to 11-cis-retinol (11cROL) in the visual cycle, controls the rhodopsin regeneration rate and photoreceptor susceptibility to light-induced degeneration. Mutations in RPE65 have been linked to blindness in affected children. Despite such importance, the mechanism that regulates RPE65 function remains unclear. Through unbiased expression screening of a bovine retinal pigment epithelium (RPE) cDNA library, we have identified elongation of very long-chain fatty acids-like 1 (ELOVL1) and fatty acid transport protein 4 (FATP4), which each have very long-chain fatty acid acyl-CoA synthetase (VLCFA-ACS) activity, as negative regulators of RPE65. We found that the VLCFA derivative lignoceroyl (C24:0)-CoA inhibited synthesis of 11cROL, whereas palmitoyl (C16:0)-CoA promoted synthesis of 11cROL. We further found that competition of FATP4 with RPE65 for the substrate of RPE65 was also involved in the mechanisms by which FATP4 inhibits synthesis of 11cROL. FATP4 was predominantly expressed in RPE, and the FATP4-deficient RPE showed significantly higher isomerase activity. Consistent with these results, the regeneration rate of 11-cis-retinaldehyde and the recovery rate for rod light sensitivity were faster in FATP4-deficient mice than wild-type mice. Moreover, FATP4-deficient mice displayed increased accumulation of the cytotoxic all-trans retinaldehyde and hypersusceptibility to light-induced photoreceptor degeneration. Our findings demonstrate that ELOVL1, FATP4, and their products comprise the regulatory elements of RPE65 and play important roles in protecting photoreceptors from degeneration induced by light damage

    Zika virus impairs the development of blood vessels in a mouse model of congenital infection

    Get PDF
    Zika virus (ZIKV) is associated with brain development abnormalities such as primary microcephaly, a severe reduction in brain growth. Here we demonstrated in vivo the impact of congenital ZIKV infection in blood vessel development, a crucial step in organogenesis. ZIKV was injected intravenously in the pregnant type 2 interferon (IFN)-deficient mouse at embryonic day (E) 12.5. The embryos were collected at E15.5 and postnatal day (P)2. Immunohistochemistry for cortical progenitors and neuronal markers at E15.5 showed the reduction of both populations as a result of ZIKV infection. Using confocal 3D imaging, we found that ZIKV infected brain sections displayed a reduction in the vasculature density and vessel branching compared to mocks at E15.5; altogether, cortical vessels presented a comparatively immature pattern in the infected tissue. These impaired vascular patterns were also apparent in the placenta and retina. Moreover, proteomic analysis has shown that angiogenesis proteins are deregulated in the infected brains compared to controls. At P2, the cortical size and brain weight were reduced in comparison to mock-infected animals. In sum, our results indicate that ZIKV impairs angiogenesis in addition to neurogenesis during development. The vasculature defects represent a limitation for general brain growth but also could regulate neurogenesis directly

    Laser-powered Martian rover

    Get PDF
    Two rover concepts were considered: an unpressurized skeleton vehicle having available 4.5 kW of electrical power and limited to a range of about 10 km from a temporary Martian base and a much larger surface exploration vehicle (SEV) operating on a maximum 75-kW power level and essentially unrestricted in range or mission. The only baseline reference system was a battery-operated skeleton vehicle with very limited mission capability and range and which would repeatedly return to its temporary base for battery recharging. It was quickly concluded that laser powering would be an uneconomical overkill for this concept. The SEV, on the other hand, is a new rover concept that is especially suited for powering by orbiting solar or electrically pumped lasers. Such vehicles are visualized as mobile habitats with full life-support systems onboard, having unlimited range over the Martian surface, and having extensive mission capability (e.g., core drilling and sampling, construction of shelters for protection from solar flares and dust storms, etc.). Laser power beaming to SEV's was shown to have the following advantages: (1) continuous energy supply by three orbiting lasers at 2000 km (no storage requirements as during Martian night with direct solar powering); (2) long-term supply without replacement; (3) very high power available (MW level possible); and (4) greatly enhanced mission enabling capability beyond anything currently conceived

    Reduced dimer production in solar-simulator-pumped continuous wave iodine lasers based on model simulations and scaling and pumping studies

    Get PDF
    A numerical rate equation model for a continuous wave iodine laser with longitudinally flowing gaseous lasant is validated by approximating two experiments that compare the perfluoroalkyl iodine lasants n-C3F7I and t-C4F9I. The salient feature of the simulations is that the production rate of the dimer (C4F9)2 is reduced by one order of magnitude relative to the dimer (C3F7)2. The model is then used to investigate the kinetic effects of this reduced dimer production, especially how it improves output power. Related parametric and scaling studies are also presented. When dimer production is reduced, more monomer radicals (t-C4F9) are available to combine with iodine ions, thus enhancing depletion of the laser lower level and reducing buildup of the principal quencher, molecular iodine. Fewer iodine molecules result in fewer downward transitions from quenching and more transitions from stimulated emission of lasing photons. Enhanced depletion of the lower level reduces the absorption of lasing photons. The combined result is more lasing photons and proportionally increased output power
    • …
    corecore