5,018 research outputs found

    Guidelines for developing vectorizable computer programs

    Get PDF
    Some fundamental principles for developing computer programs which are compatible with array-oriented computers are presented. The emphasis is on basic techniques for structuring computer codes which are applicable in FORTRAN and do not require a special programming language or exact a significant penalty on a scalar computer. Researchers who are using numerical techniques to solve problems in engineering can apply these basic principles and thus develop transportable computer programs (in FORTRAN) which contain much vectorizable code. The vector architecture of the ASC is discussed so that the requirements of array processing can be better appreciated. The "vectorization" of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and some of the difficulties involved. Increases in computing speed with vectorization are illustrated with results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of these principles was substantiated through running programs on other computers with array-associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F

    Addition of silicon improves oxidation resistance of nickel based superalloys

    Get PDF
    Specific weight changes of nickel-base superalloy B-1900 and B-1900 + 1% Si specimens were tested at 1273 K. B-1900 was losing weight at an increasing rate due to spalling of oxide scale while B-1900 + 1% Si was still gaining weight at low, nearly constant rate. Similar comparison in weight change was observed for specimens tested at 1373 K

    Computer user's guide for a chemically reacting viscous shock-layer program

    Get PDF
    A description is given of the computer code for predicting viscous shock-layer flows over nonanalytic blunt bodies (Program VISLNABB) for hypersonic, low Reynolds number flows. Four specific and one general body geometries are considered. In addition to sphere-cones, cylinder wedges and geometries defined in tabular form, options for hyperboloids and paraboloids are included. Details of the theory and results are included in a separate engineering report. The program, subroutines, variables in common, and input and output data are described. Listings of the program code, output data for a sample case, and the input data for this sample case are included

    Hypersonic ionizing air viscous shock-layer flows over nonanalytic blunt bodies

    Get PDF
    The equations which govern the viscous shock-layer flow are presented and the method by which the equations are solved is discussed. The predictions of the present finite-difference method are compared with other numerical predictions as well as with experimental data. The principal emphasis is placed on predictions of the viscous flowfield for the windward plane of symmetry of the space shuttle orbiter and other axisymmetric bodies which approximate the shuttle orbiter geometry. Experimental data on two slender sphere-cones at hypersonic conditions are also considered. The present predictions agreed well with experimental data and with the past predictions. Substantial differences were found between present predictions and more approximate methods

    Effects of silicon additions on oxidation and mechanical behavior of the nickel-base superalloy B-1900

    Get PDF
    Test specimens with nominal additions of Si were tested in oxidation, thermal fatigue, sulfidation, tension, and stress rupture, and were also extensively studied metallographically. Alloy B-1900 modified with 0.6- or 1.2-wt% Si exhibited oxidation resistance equivalent to that of aluminide-coated B-1900 during cyclic, high-gas-velocity oxidation tests. Resistances to thermal fatigue and sulfidation were improved by the Si additions, but were not superior to aluminide-coated B-1900. Stress-rupture tests at 1000 C of specimens given the standard heat treatment to simulate an aluminide coating cycle showed Si to be detrimental. However, application of another heat treatment increased the rupture life of the alloy with 0.6-wt% Si to that of the unmodified B-1900 given the standard heat treatment

    Isolated sequences from the linked Myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice

    Get PDF
    In developing mouse embryos, MyoD family regulatory genes are expressed specifically in muscle precursors and mature myofibers. This pattern, taken together with the well-established ability of MyoD family members to convert a variety of cell types to skeletal muscle, suggests a significant role for these genes in regulating skeletal myogenesis. The possibility that expression of these genes may be causally associated with segregation of the myogenic lineage from other mesodermal derivatives, or with the subsequent maintenance of muscle phenotypes at later times, raises the issue of how MyoD family genes are themselves regulated during development. In this work, we have initiated studies to identify DNA sequences that govern Myf-5 and MRF4 (herculin, myf-6) transcription. Myf-5 is the first of the MyoD family to be expressed in the developing mouse embryo, while MRF4 is the most abundantly expressed myogenic factor in postnatal animals. In spite of their strikingly divergent patterns of expression, Myf-5 and MRF4 are tightly linked in the mouse genome; their translational start codons are only 8.5 kilobases apart. Here, the 5' flanking regions of the mouse Myf-5 and MRF4 genes were separately linked to a bacterial β-galactosidase (lacZ) gene, and these constructs were each used to produce several lines of transgenic mice. Transgene expression was monitored by X-gal staining of whole embryos and by in situ hybridization of embryo sections. For the Myf-5/lacZ lines, the most intense transgene expression was in the visceral arches and their craniofacial muscle derivatives, beginning at day 8.75 post coitum (p.c.). This correlates with endogenous Myf-5 expression in visceral arches. However, while Myf-5 is also expressed in somites starting at day 8 p.c., transgene expression in the trunk is not observed until day 12 p.c. Thus, the Myf-5/lacZ construct responds to early Myf-5 activators in the visceral arches but not in the somites, suggesting that myogenic determination in the nonsomitic head mesoderm may be under separate control from that of the somitic trunk mesoderm. MRF4/lacZ lines displayed an entirely different pattern from Myf-5. Transgene expression appeared in muscles starting at day 16.5 p.c. and became increasingly prominent at later times. However, an early wave of myotomal expression that is characteristic of the endogenous MRF4 was not recapitulated by the transgene

    A finite difference method for predicting supersonic turbulent boundary layer flows with tangential slot injection

    Get PDF
    An implicit finite difference method has been applied to tangential slot injection into supersonic turbulent boundary layer flows. In addition, the effects induced by the interaction between the boundary layer displacement thickness and the external pressure field are considered. In the present method, three different eddy viscosity models have been used to specify the turbulent momentum exchange. One model depends on the species concentration profile and the species conservation equation has been included in the system of governing partial differential equations. Results are compared with experimental data at stream Mach numbers of 2.4 and 6.0 and with results of another finite difference method. Good agreement was generally obtained for the reduction of wall skin friction with slot injection and with experimental Mach number and pitot pressure profiles. Calculations with the effects of pressure interaction included showed these effects to be smaller than effects of changing eddy viscosity models

    Voyager 1 Encounter with the Saturnian System

    Get PDF
    An overview of the Voyager 1 encounter with Saturn is presented, including a brief discussion of the flight, trajectory, science plan formulation, and highlights of the results described in the subsequent reports

    Slowly cycling Rho kinase-dependent actomyosin cross-bridge slippage explains intrinsic high compliance of detrusor smooth muscle

    Get PDF
    Biological soft tissues are viscoelastic because they display timeindependent pseudoelasticity and time-dependent viscosity. However, there is evidence that the bladder may also display plasticity, defined as an increase in strain that is unrecoverable unless work is done by the muscle. In the present study, an electronic lever was used to induce controlled changes in stress and strain to determine whether rabbit detrusor smooth muscle (rDSM) is best described as viscoelastic or viscoelastic plastic. Using sequential ramp loading and unloading cycles, stress-strain and stiffness-stress analyses revealed that rDSM displayed reversible viscoelasticity, and that the viscous component was responsible for establishing a high stiffness at low stresses that increased only modestly with increasing stress compared with the large increase produced when the viscosity was absent and only pseudoelasticity governed tissue behavior. The study also revealed that rDSM underwent softening correlating with plastic deformation and creep that was reversed slowly when tissues were incubated in a Ca2+ -containing solution. Together, the data support a model of DSM as a viscoelastic-plastic material, with the plasticity resulting from motor protein activation. This model explains the mechanism of intrinsic bladder compliance as slipping cross bridges, predicts that wall tension is dependent not only on vesicle pressure and radius but also on actomyosin cross-bridge activity, and identifies a novel molecular target for compliance regulation, both physiologically and therapeutically

    Infrared radiometry experiment for Mariner Mars 1971

    Get PDF
    The infrared radiometer is designed to provide brightness temperatures of the surface of Mars by measuring the energy radiated in the 8 to 12 and 18 to 25 μ wavelength bands. The instrument is essentially the same as that flown on the Mariner Mars 1969 missions, modified only to define more sharply the field of view. Because Mariner Mars 1971 will orbit Mars, a given area of the planet will be observed at a variety of local times, and the characterization of the various areas by their thermophysical properties will be more complete than that obtained by Mariner Mars 1969
    corecore