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RESEARCH ARTICLE
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bridge “slippage” explains intrinsic high compliance of detrusor
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First published March 29, 2017; doi:10.1152/ajprenal.00633.2016.—
Biological soft tissues are viscoelastic because they display time-
independent pseudoelasticity and time-dependent viscosity. However,
there is evidence that the bladder may also display plasticity, defined
as an increase in strain that is unrecoverable unless work is done by
the muscle. In the present study, an electronic lever was used to
induce controlled changes in stress and strain to determine whether
rabbit detrusor smooth muscle (rDSM) is best described as viscoelas-
tic or viscoelastic plastic. Using sequential ramp loading and unload-
ing cycles, stress-strain and stiffness-stress analyses revealed that
rDSM displayed reversible viscoelasticity, and that the viscous com-
ponent was responsible for establishing a high stiffness at low stresses
that increased only modestly with increasing stress compared with the
large increase produced when the viscosity was absent and only
pseudoelasticity governed tissue behavior. The study also revealed
that rDSM underwent softening correlating with plastic deformation
and creep that was reversed slowly when tissues were incubated in a
Ca2�-containing solution. Together, the data support a model of DSM
as a viscoelastic-plastic material, with the plasticity resulting from
motor protein activation. This model explains the mechanism of
intrinsic bladder compliance as “slipping” cross bridges, predicts that
wall tension is dependent not only on vesicle pressure and radius but
also on actomyosin cross-bridge activity, and identifies a novel mo-
lecular target for compliance regulation, both physiologically and
therapeutically.

bladder; biomechanics; contraction; blebbistatin; cytochalasin D;
ROCK

SOFT TISSUES SUCH AS SKIN and muscle are classified as viscoelas-
tic materials because they are reported to display time-inde-
pendent elasticity (springlike behavior) and time-dependent
viscosity (fluidlike resistance to deformation), and because
they return to their original length after removal of a deforming
force (13, 39). This classification permits biomechanical com-
puter (in silico) modeling of complex tissues and organs, such
as the urinary bladder (1, 14, 21, 24, 25, 34), in an attempt to
better interpret information, make predictions, and simulate

conditions relevant to understanding material changes that take
place under certain pathologies (15, 36). However, in silico
models have not yet provided a comprehensive description of
normal and pathological bladder behavior (23), indicating that
additional studies are required to biomechanically characterize
detrusor smooth muscle (DSM).

Urologists rely on pressure-volume (cystometric) analyses
(29) to diagnose urological disorders. By exploiting certain
transformations that relate wall stress to vesicle pressure,
radius, and wall thickness (i.e., the Laplace relationship), the
description of the bladder as a viscoelastic material permits
calculations of wall tension, as well as extrapolation from one-
and two-dimensional stress-strain material characteristics ex-
amined in vitro to three-dimensional whole organ pressure-
volume behavior. Several assumptions are necessary to vali-
date such transformations, including that the tissue is elastic,
pseudoelastic or viscoelastic, and thus returns to its original
length after removal of a deforming force. However, a few
early studies provide evidence that the bladder does not return
to its original length after removal of a deforming force,
suggesting that, in addition to viscoelasticity, the bladder
displays plastic behavior (1, 2). Notably, the bladder is known
to be highly compliant during much of the filling phase (large
increase in volume for a given increase in pressure) (40)
compared with, for example, the systemic vasculature (37),
suggesting that minimal force is developed when DSM is
lengthened, but the precise biomechanics of DSM stress-strain
behavior remain to be fully elucidated. Our laboratory and
others have shown that bladder (33) and gastrointestinal
smooth muscles (16, 22) can be strain softened. Furthermore,
“slippage” of slowly cycling actomyosin cross bridges in
tissues incubated in a Ca2�-free solution to abolish active
contraction (19, 28, 35) appears to be responsible for the
“resting” force softened by strain, suggesting that cross bridges
may participate in DSM plasticity. The goal of the present
study was to more fully characterize the viscoelastic properties
of isolated rabbit DSM (rDSM), and to determine whether
rDSM can be described solely as a viscoelastic material, or as
a viscoelastic material that also contains a plastic element.

METHODS

Animals. All studies were approved by the Institutional Animal
Care and Use Committee of Virginia Commonwealth University and
conform to the Public Health Service Policy on Humane Care and Use
of Laboratory Animals and the National Research Council Guide for
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the Care and Use of Laboratory Animals. Specific pathogen-free,
male, New Zealand White rabbits were obtained from Robinson
Services (Mocksville, NC) and maintained in the vivarium at 19–
22°C and a 12:12-h light-dark cycle for at least 6 to 7 days before
experimentation. Animals were individually housed, provided envi-
ronmental enrichment, and fed a combination of pelleted high-fiber
rabbit food (Harlan Teklad 2031, ~1 cup/day) and hay.

Tissue preparation. Tissues were prepared as previously described
(32). In short, urinary bladders were removed from euthanized rabbits
and immediately placed in ice-cold physiological salt solution [PSS;
composition in mM: 140 NaCl, 4.7 KCl, 1.2 Na2HPO4-7H2O, 2.0
MOPS, 0.02 Na2-ethylenediamine tetraacetic acid to chelate heavy
metals, 5.6 D-glucose, 1.6 CaCl2, and 1.2 MgCl2, made with high-
purity (17 M�) deionized water and adjusted using NaOH to a pH of
7.4]. A nominally Ca2�-free solution in which CaCl2 was not added
to the standard PSS also was used in this study. Thin strips of rDSM
~3 mm wide by ~100 �m thick were isolated from underlying mucosa
by microdissecting longitudinal muscle bundles clearly visible under
a stereo microscope (Olympus SZX12). Each muscle strip immersed
in PSS in an aerated muscle bath heated to 37°C was secured by
aluminum foil to the lever arm of a computer-driven dual-mode
electronic lever (model 300B-LR, Aurora Scientific, Aurora, ON,
Canada) to impose controlled length and force perturbations and
measure resulting force and length changes, respectively (27), and a
Delrin clip coupled to a micrometer (20-mm range, 10-�m gradua-
tions; 262M, L. S. Starrett, Athol, MA) for manual length adjust-
ments. The initial slack length of each tissue between the clips was ~3
mm. Voltage signals to and from the lever were digitized using a
multifunction data-acquisition board (PCI-6036E, National Instru-
ments, Austin, TX) and stored on a computer at 1,000 Hz using a
data-acquisition program (DASYLab 10, National Instruments).

Length-force analysis. Each rDSM strip was subjected to a full-
length force analysis to identify a reference length (lref) that produced
the maximum active force induced upon stimulation with 110 mM
KCl (substituted isosmotically for NaCl). The force borne by the
muscle at each length before stimulation with KCl was the preload
force, also termed “resting” or “passive” force (26). After establishing
lref, each tissue was positioned at 80% lref and contracted briefly
(~30 s) two times using KCl as the stimulus to identify the degree of
active contraction at 80% lref. The KCl was washed from the tissue
each time with two changes of fresh PSS. Each KCl-induced contrac-
tion followed by washout-induced relaxation was termed a contrac-
tion-relaxation cycle. Tissues were considered ready for loading-
unloading cycling once they had developed spontaneous low-ampli-
tude rhythmic contractions. All subsequent studies on force and stress
(force per tissue area), except where designated, examined the effects
of tissue strain (normalized length) on preload force in tissues incu-
bated in a nominally Ca2�-free PSS to ensure that spontaneous
rhythmic (active) contractions were absent (33). Thus “force” and
“stress” in all figures, except those panels identifying a KCl-induced
contraction, refer to the preload force borne when tissues were not
activated by a contractile stimulus. Force and stress were reported as
millinewtons and kilopascals, respectively (26). Strain was calculated
as the length, l, minus the initial length, l0, divided by the initial length
[strain � (l � l0)/l0], or as the strain ratio (l/l0) (13, 26). Stiffness in
kilopascals was calculated as the incremental change in stress divided
by the incremental change in strain and was plotted as a function of
stress.

Protocols. Strips of rDSM were subjected to three sequential
perturbations (protocols). A preconditioning protocol consisted of
seven sequential ramp loading-unloading (L-UL) cycles (for example,
Fig. 1A, A1–A7) (13). One or 10 min after preconditioning, the tissue
was subjected to a single ramp L-UL cycle (for example, Fig. 1A,
B1–1=) to measure the degree of viscous return (Fig. 1B, B1–1=).
Immediately following the viscous return protocol, each tissue was
subjected to a preload force-recovery protocol consisting of incuba-
tion for 15 min in PSS, a contraction-relaxation cycle using KCl as the

stimulus, and a single ramp L-UL cycle (see Fig. 4A). In all three
protocols, the lever was programed to stretch the muscle (loading, L)
at a constant rate of 18.75% lref/s from an initial muscle length (l0) of
80% lref to a final length of 98.75% lref, then immediately release the
muscle (unloading, UL) at the same rate from 98.75% lref back to 80%
lref. Thus each L-UL cycle was imposed at an overall rate of 0.5 Hz.
The temporal changes in preload force induced by the ramp changes
in length imposed on the muscle were recorded, and the maximum and
minimum stress values were calculated. From the time-dependent
strain and stress data, full stress-strain curves were calculated and
plotted for both loading (see Figs. 2 and 4) and unloading (see Fig. 7).

Data analysis and statistics. All data were analyzed using Graph
Pad Prism 6.0 software (GraphPad Software, La Jolla, CA) and are
presented as representative tracings and as means � SE. The “n”
value was the number of bladders, not the number of muscle strips.
When two groups were compared for statistical analyses, data were
evaluated by Student’s t-test, and the null hypothesis was normally
rejected at P � 0.05. When group was compared more than once,
Student’s t-test with the Bonferroni method was used. In the latter
case, if one group was compared twice or three times, then the null
hypothesis was rejected at, respectively, P � 0.025 or P � 0.0125.

RESULTS

Stress-strain curves produced by the preconditioning
protocol. Over the course of seven sequential ramp L-UL
cycles, each at 0.5 Hz (Fig. 1A, A1 . . . A7 and see inset for a
zoomed image of a single cycle), the stress achieved at the end
of each loading (i.e., the peak stress values, Fig. 1B) declined
(softened) exponentially with a half-time (t½) of 2.7 s
(r2 � 0.99). We designated the seventh cycle as representing a
pseudo-steady-state set of values because, based on the t½, the

Fig. 1. Example of data from a preconditioning (A1 . . . A7) and viscous-return
(B1-1=) loading (L) and unloading (UL) protocol. A: strain. B: force. The
horizontal bars in the insets equal 1 s. The vertical bar in the inset of A is
strain � 0.1, and the vertical bars in the insets of B are stress � 10 mN. Data
collected using preconditioning and viscous-return protocols occurred while
tissues were incubated in a nominally Ca2�-free solution.
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maximum stress observed during the seventh cycle had
achieved ~97% of the theoretical final steady-state maximum
value. The minimum stress achieved at the end of each un-
loading fell by nearly 80% from the first to second L-UL cycle
(Fig. 1B) and declined only slightly thereafter. Thus both
maximum and minimum stress values achieved during the
seventh L-UL cycle (A7 maximum: 15.9 � 1.7; A7 minimum:
0.0 � 0.2; n � 9) were significantly less than the respective
values achieved during the first L-UL cycle (A1 maximum:
25.3 � 2.7; A1 minimum: 1.6 � 0.3; n � 9, P � 0.05). For
cycle 1, the loading stress-strain curve was nearly linear (Fig.
1B, inset: A1, L), and the unloading curve was nonlinear and
considerably weaker than the loading curve at comparable
strain values (Fig. 1B, inset: A1, UL). Subsequent loading
curves were nonlinear and weaker than the A1 loading curve
(Fig. 1B, inset: A2, L), indicating that the tissue had softened.
The area of the seventh cycle was less than that of the first
cycle, indicating that the preconditioned tissue displayed lower
viscosity than the non-preconditioned tissue.

Comparison of the initial loading stress-strain curve (A1, L)
to those produced after preconditioning (A7, L) and by the
viscous-return protocol (B1, L). The toe region of the stress-
strain curve of A1 (Fig. 2A, values between 0 and ~7 kPa)

displayed an increase then decrease (spike) in stiffness when
plotted as a stiffness-stress curve (not shown). When the toe
region was excluded, the shape of the first loading stress-strain
curve was nearly linear (Fig. 2A, A1), which resulted in a low
slope in the linear stiffness-stress plot (Fig. 2B, A1, and Table
1). Because stiffness-stress curves of biological tissues gener-
ally display increasing stiffness with increasing stress, Fung’s
group (13, 38) introduced the term E0, the Y-intercept of the

Fig. 2. Stress-strain (A and C) and stiffness-stress (B and D) analyses for the
initial loading (A1; A and B) and final loading (A7; A and B) of the
preconditioning protocol, and the single loading of the viscous-return
protocol after wait periods of 1 min (B1–1=; A, C, and D) and 10 min
(B1–10=; C and D). B: also shown for comparison is the stiffness-stress
curve calculated for the preload force-recovery protocol (C1). A: values are
means (solid lines) � SE (shaded lines); n � 4. All B1–1= stress data are
significantly different from respective A1 stress data (P � 0.025), and A7
and B1–1= stress data are significantly different from strain � 0 to
strain � 0.174 (P � 0.025). A: calcium channel blockade (1 �M nifedipine,
dashed-dotted shaded line, n � 1) appeared to permit softening just as
incubation in a Ca2�-free solution did. C: values are mean values (hori-
zontal bar identifies strain range where stress values are different; P �
0.05). B and D: values are means � SE; n � 8 –9.

Table 1. Y-intercept (E0) and slope of linear stiffness-stress
curves

A1, L A7, L B1, L C1, L UL

E0, kPa 77.8 � 12.6 28.9 � 12.6 54.5 � 11.0 77.3 � 14.4 12.3 � 0.5
Slope 3.1 � 0.8 13.6 � 1.3 5.0 � 1.1 3.5 � 0.9 33.4 � 0.1
n 9 8 8 8 9
r2 0.85 0.98 0.91 0.84 0.98

Values are means � SE; n, no. of bladders. L, loading; UL, unloading. A1,
A7, and B1 are defined in the text and in Fig. 1 legend, C1 is defined in the text
and in Fig. 4 legend.

Fig. 3. Stress-strain curves resulting from ramp loading at the rate of strain
used in all other studies (18.75%/s) and at a 10-fold higher rate (18.75%/0.1 s)
for the first (A1; A) and last (A7; B) loading portions of the preconditioning
protocol, and the loading portion of the viscous-return protocol (B1; C). Values
are means � SE; n � 3. *P � 0.05, comparing slow to fast rates.
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extrapolated linear stiffness-stress curve that, for the A1 curve,
was relatively high (Table 1). The shape of the seventh loading
curve was much more curvilinear than that of the first loading
curve, resulting in a stiffness-stress plot (Fig. 2B, A7) display-
ing a higher slope and lower E0 value (Table 1). That is, at
stress values less than ~5 kPa, the preconditioned tissue rep-
resented by the A7 stress-strain curve was less stiff than that of
the non-preconditioned tissue represented by the extrapolated
A1 stress-strain curve, and, at stress values greater than ~5 kPa,
the stiffness of the preconditioned tissue was increasingly
much greater than that of the non-preconditioned tissue (Fig.
2B). A tissue incubated in a Ca2�-containing solution (1.6 mM
CaCl2) in which 1 �M nifedipine was included to block
cellular Ca2� entry produced responses similar to those pro-
duced by tissues incubated in a nominally Ca2�-free solution
(Fig. 2A, dashed-dotted shaded lines).

Although the maximum and minimum stress values induced
by loading after a 1-min wait-period (viscous-return protocol,
B1–1=) were not elevated above those induced by the A7
loading, stress values between these extremes were increased
(Fig. 2A, compare B1–1= to A7). Thus, the B1–1= stress-strain

curve had less curvature than the A7 stress-strain relationship,
resulting in a stiffness-stress curve intermediate to A1 and A7
(compare Fig. 2D to Fig. 2B and see Table 1). There was a
small but significant difference within a narrow range of the toe
region when comparing the stress-strain curve produced after
waiting 10 min (B1–10=) to that produced after waiting 1 min
(B1–1=) before subjecting tissues to the viscous-return L-UL
cycle (B1). This difference was evident when the curves were
plotted as fold-maximum (Fig. 2C, region of significant differ-
ence is indicated by a short horizontal line below “P � 0.05”).
However, when excluding the toe region, the B1–1= and
B1–10= stress-strain and stiffness-stress (Fig. 2D) curves were
not different. The average stiffness-stress parameters calcu-
lated when combining data from B1–1= and B1–10= are pre-
sented in Table 1.

Together, these data support the hypothesis that rDSM
behaved as a viscoelastic tissue during the first L-UL cycle,
and that seven sequential ramp L-UL cycles caused precondi-
tioning, such that rDSM behaved mechanically as a pseu-
doelastic rather than viscoelastic biomaterial (13) by the sev-
enth cycle, as assessed by the A7 loading stress-strain and

Fig. 4. Examples of contraction-relaxation cycles in the
absence (A) and presence (B) of the Rho kinase inhibitor
H-1152, and summary data showing the effects of inhibition
of Rho kinase (H-1152; C), actin polymerization (Cyto-D;
C), and actomyosin cross-bridge cycling (Bleb; C) on the
peak force induced by KCl. Also shown are the loading
stress-strain curves induced in a Ca2�-free solution after the
contraction-relaxation cycle (D–G) to assess whether inhi-
bition of Rho kinase (E), actin polymerization (F), and
actomyosin cross-bridge cycling (G) reduces the ability of
the contraction-relaxation cycle to permit recovery of pre-
load force compared with control tissues not exposed to a
drug (D). Values in C are means � SE; n � 3. *P � 0.05
compared with 1.0. Values in D–G are means � SE (thin
gray lines); n values are in parentheses. *P � 0.05 com-
paring C1 and B1.
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stiffness-stress curves. This hypothesis was supported by an
experiment revealing that the A1 (Fig. 3A) and B1 (Fig. 3C)
loading stress-strain curves were highly sensitive to the rate of
loading, as would be expected in a viscous material, and that,
except at the longest strains, the A7 loading curve was insen-
sitive to a 10-fold increase in the strain rate (Fig. 3B), as would
be expected of a (pseudo)elastic material. The data presented in
Fig. 2C support our model that rDSM viscosity may be repre-
sented by at least two viscous elements (34): one that returns
relatively rapidly (within 1 min after completion of a 14-s
preconditioning protocol), and one that returns more slowly
and plays a mechanical role only at very low stress-strain
values (within the toe region).

Comparison of the initial loading stress-strain curve (A1, L)
to those produced by the viscous-return protocol (B1, L) and
the preload force-recovery protocol (C1, L). At all strains
examined, preload stress values induced during the B1–1=
loading were significantly weaker than those induced during
the A1 loading (Fig. 2A). We, therefore, tested the hypothesis
that a contraction-relaxation cycle (Fig. 4A) would permit
recovery (strengthening) of the softened preload force, as
assessed by subsequently incubating the tissue in a nominally
Ca2�-free solution and subjecting it to a single L-UL cycle that
we termed “C1.” A single contraction-relaxation cycle permit-
ted nearly full restoration of force, as assessed by the loading
stress-strain curve (Fig. 4D, compare C1 to A1 and B1).
Moreover, stiffness was fully restored, as revealed by the
finding that stiffness-stress curve calculated for the C1 loading
was superimposable on that calculated for the A1 loading (Fig.
2B, compare C1 to A1, and see Table 1).

To determine whether contractile proteins participated in the
recovery of preload force, tissues were exposed to inhibitors of

Rho-associated protein kinase [1 �M H-1152 (Ref. 3), Fig.
4B], actomyosin cross bridges [30 �M blebbistatin (12)], and
actin polymerization [0.2 �M cytochalasin D (4)] 15 min
before and during the addition of KCl. Before subjecting
tissues to a L-UL cycle (C1) to test for force recovery, drugs
were washed from the tissues, and spontaneous rhythmic
(active) contractions were prevented by two washes in a
nominally Ca2�-free solution (see Fig. 4B). KCl-induced peak
force was inhibited weakly by H-1152 (~10%, Fig. 4C). Incu-
bation with cytochalasin D had no effect on KCl-induced peak
force (Fig. 4C, Cyto-D), and incubation with blebbistatin
caused an ~50% inhibition (Fig. 4C, Bleb). As assessed by the
loading stress-strain curves, H-1152 (Fig. 4E), cytochalasin D
(Fig. 4F), and blebbistatin (Fig. 4G) each prevented force
recovery, despite exerting very different levels of inhibition of
active force induced by KCl (Fig. 4C). These data suggest that
the softening of preload force by preconditioning was due to
yielding and slippage of a pool of actomyosin cross bridges not
identical to those responsible for stimulus-induced active con-
traction.

Plastic deformation, creep, and Ca2�-dependent slow rever-
sal of plastic deformation. To test the hypothesis that rDSM
undergoes plastic deformation, tissues subjected to a single
contraction-relaxation cycle and washed in a nominally Ca2�-
free solution to ensure that they remained quiescent (i.e., free
of spontaneous rhythmic contractions, Fig. 5A) were subjected
to a load-clamp protocol. This protocol consisted of a step-
increase in preload stress (step-load, Fig. 5A, L) from ~10% to
~25% of that developed by KCl, at which time stress was held
constant (isotonic hold, or load clamp) for ~5 min, then stress
was decreased (step unload) and clamped at the original or a
weaker stress level (Fig. 5A; square-wave L, clamp, and UL,

Fig. 5. Example of a contraction-relaxation cycle
followed by a load-clamp protocol (A) and the
resulting plastic deformation (D) that included the
immediate strain (strain region between vertical dot-
ted lines in E, which is a zoomed image of D) during
loading (L, stress region between vertical dotted
lines in B, which is a zoomed image of A), continued
strain (Creep; E) during the load-clamp (Clamp; B)
and absence of elastic recoil (F) upon unloading
(UL; C). A: when incubated in a Ca2�-containing
solution, the tissue usually developed spontaneous
rhythmic contraction (stress data shown before ad-
dition of KCl, which is also shown as a zoomed
stress-tracing in the inset). A: exposure to a Ca2�-
free solution abolished rhythmic contraction.
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and zoomed images of L and clamp, Fig. 5B; and load-clamp
followed by UL, Fig. 5C). The step load caused an immediate
lengthening (increase in strain, Fig. 5D, and zoomed image,
Fig. 5E). Notably, the tissue continued to lengthen even as
stress was held constant (clamped) at the new, higher level
(“Creep”, zoomed images, Fig. 5, E and F). Tissue creep
ceased abruptly (Fig. 5D and zoomed image, Fig. 5F) upon
unloading (Fig. 5C, UL), but muscle length did not return to its
original value (Fig. 5D and zoomed image, Fig. 5F). That is,
the tissue remained at its deformed length, which supports the
hypothesis that rDSM contains a plastic element. Plastic de-
formation was not permanent if, during the step-load, load-
clamp, step-unload protocol, tissues were maintained in a
Ca2�-containing solution (Fig. 6, B, D, F, and H) instead of in
a nominally Ca2�-free solution (Fig. 6, A, C, E, and G).
Shortening of the tissue incubated in the Ca2�-containing

solution consisted of two components: a slow component
corresponding with the step unload, and a very slow compo-
nent corresponding with the load clamp at the original preload
stress value (Fig. 6, F and H, zoomed images).

On average, tissues incubated in a Ca2�-free solution (n �
4) displayed plastic deformation with no recovery shortening
upon unloading (Fig. 6I, Ca2�-free), whereas tissues incubated
in a Ca2�-containing solution (n � 3) recovered ~55% of the
plastic deformation within ~6 min (Fig. 6I, �Ca2�) by a
combination of slow (0.00067 muscle lengths/s) and very slow
(0.000083 muscle lengths/s) shortening (Fig. 6J). These rates
are over three orders of magnitude slower than the maximum
rate of muscle shortening in rabbit bladder (0.61 muscle
lengths/s) (17).

For comparison, a rabbit renal artery incubated in a Ca2�-
free solution was subjected to a load-clamp protocol (Fig. 6K;

Fig. 6. Examples of a Ca2�-free, load-clamp
protocol (A) as in Fig. 5, a modified load-clamp
protocol in which tissues remained in a Ca2�-
containing solution (B), and the resulting perma-
nent plastic deformation that occurred when tis-
sues were in a Ca2�-free solution (C) compared
with slow and very slow recovery of plastic
deformation that occurred when tissues were
in a Ca2�-containing solution (D). E and F:
zoomed images of A and B, respectively. G
and H: zoomed images of C and D, respec-
tively. I: average data comparing strain values
resulting from Ca2�-free and Ca2�-containing
load-clamp protocols; n � 3. *P � 0.05. J:
average data fit by linear regression analysis
revealing slow and very slow spontaneous
muscle shortening. Also shown is an example
of the strain changes (L) produced by a rabbit
renal artery subjected to a Ca2�-free load-
clamp protocol (K).
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step increase in preload was from ~9 to ~15% of a KCl peak
contraction, Sref). Strain in renal artery (Fig. 6L), like that in
rDSM (Fig. 6G), increased immediately upon the step load,
then underwent creep (Fig. 6L) during the load clamp at the
higher stress (Fig. 6K). Unlike rDSM (Fig. 6G, UL), rabbit
renal artery did not remain at the longer strain (Fig. 6L, UL)
when the tissue was unloaded, but immediately “snapped
back,” although only by ~50% (Fig. 6K, UL). Together, these
data suggest that plastic deformation may be a feature common
to different smooth muscle types, and that the degree of plastic
deformation in rDSM is greater than that in arterial smooth
muscle. Moreover, the data suggest that Ca2�-dependent
slowly cycling cross-bridge activity is responsible for adjusting
the degree of plastic deformation.

Stress-strain analysis during unloading. The stress-strain
relationships calculated from the unloading portion of the first
(Fig. 7A, A1) and seventh (Fig. 7B, A7) sequential L-UL
cycles, from the viscous-return L-UL cycle (Fig. 7C, B1), and
from the force-recovery L-UL cycle (Fig. 7D, C1) fit a curve

described by a single exponential (stress � Y0ek 	 strain), with
Y0 ~0 and k ranging from ~35 to ~39. A7 and C1 UL curves
were superimposable, as were A7 and B1 UL curves (Fig. 7E).
Stiffness-stress curves were superimposable at low-strain val-
ues (Fig. 7F), and the linear portion of the curve displayed a
lower E0 value and higher slope compared with loading curves
(Table 1).

DISCUSSION

The present study identifies rDSM as a viscoelastic plastic
material. Thus the proposal that all soft biological tissues are
viscoelastic (13) can be expanded to include our finding that
certain tissues, such as rDSM, can also undergo plastic defor-
mation. Notably, unlike nonbiological materials, where plastic
deformation is irreversible, plastic deformation of live rDSM is
reversible. Based on our data, we propose a working hypoth-
esis that spontaneously active, slowly cycling, actomyosin
cross bridges in rDSM represent a reversible frictional element
that alternately “slips” to lengthen and contracts to shorten
when an opposing force is, respectively, stronger and weaker
than the force borne by the cross bridges. In vitro, when the
tissue was incubated in a nominally Ca2�-free solution to
abolish cross-bridge cycling, the frictional element slipped
(deformed) upon loading the tissue, and, upon unloading, the
deformation remained, revealing the intrinsic plasticity. We
found that the frictional element also slipped when loading
while the tissues were incubated in a Ca2�-containing solution.
However, upon unloading, rDSM shortened in a biphasic
pattern, resulting in an initial slow, then very slow, reversal of
plastic deformation. We propose that, in vivo, ongoing adjust-
ments of the linear position of the rDSM actomyosin motors
endow the bladder with a mechanism to maintain a relatively
constant wall tension over a broad range of vesicular volumes
during filling. That is, we propose that the Laplace relationship
cannot accurately describe bladder biomechanics because the
bladder’s wall is not purely viscoelastic, but, instead, is a
viscoelastic, reversibly plastic material.

We have shown that rabbit, mouse, and human bladders
display reversible strain softening (6, 7, 28, 33, 36). These
results, in conjunction with the present data, suggest that
bladder compliance is a regulated parameter, and that compli-
ance regulation is dependent on the regulation of actomyosin
cross-bridge activity. If the bladder wall is modeled as a
viscoelastic material, then, according to the Laplace relation-
ship, vesicle radius, wall thickness, and pressure provide suf-
ficient parameters to accurately calculate bladder wall tension,
the major sensor of bladder fullness relayed to the central
nervous system via afferent nerves (9, 18, 30, 41). Our data
indicate that a fourth parameter, actomyosin cross-bridge ac-
tivity, must also be included. Notably, our data indicate that the
regulation of bladder actomyosin cross-bridge activity, and
thus plasticity and compliance, represents a novel molecular
focus for investigators interested in mechanisms causing, and
therapies addressing, lower urinary tract disorders involving
dysfunctional bladder contraction.

Currently, no models explain how the urinary bladder re-
mains highly compliant upon filling. There is evidence sug-
gesting that the urinary bladder is never quiescent, even during
the filling phase (8, 10, 11). In particular, during bladder filling,
cross-bridge activity of DSM appears to sequentially (rhyth-

Fig. 7. Unloading stress-strain curves of the first (A1; A) and last (A7; B)
loading-unloading cycles of the preconditioning protocol, the viscous-return
protocol (B1; C), and the preload force-recovery protocol (C1; D). Values in
A–D are means (solid lines) � SE (shaded lines); n � 8–9. E: average data
plotted together. F: average stiffness-stress curves for unloading (UL) during
cycles A1 and A7.
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mically) “turn on” (contract) and “turn off” (relax) because
DSM undergoes slow, low-amplitude, rhythmic contractions
(5, 20, 31). We propose a model that incorporates rhythmic
contractions during filling with plastic deformation that poten-
tially explains high compliance during bladder filling. During
bladder filling, DSM cells that are on the falling phase of the
rhythmic contraction (relaxed) can undergo cross-bridge slip-
page and plastic deformation, permitting accommodation of an
increased volume. Partial recovery of the plastic deformation
can occur when DSM cells are contracting (on the rising phase
of the rhythmic contraction). This model is consistent with our
clinical study revealing the dynamic nature of compliance
involving load-induced increases in compliance during filling
that are reversed by a voiding contraction (6).

Fung (13) revealed that, although the loading and unloading
curves of biological tissues after preconditioning display some
hysteresis, the curves are highly stable (there is no further
weakening with continued cycling), and the hysteresis loop is
relatively independent of strain rate, a characteristic of elastic-
ity. Thus Fung used the term pseudoelastic to distinguish this
behavior from an ideal elastic material in which loading and
unloading curves are nearly superimposable (display little
hysteresis), and he considered the loading and unloading
curves as representing two distinct elastic materials. rDSM
displayed the least amount of hysteresis after preconditioning.
Moreover, the loading curve after preconditioning was stable
and insensitive to a 10-fold increase in strain rate, suggesting
that the preconditioned rDSM could be modeled as two distinct
pseudoelastic materials.

Elastic arteries utilize extracellular matrix proteins that are
not acutely regulated when opposing the stresses induced by
ventricular ejection of blood. In the dog thoracic aorta, the E0

value extrapolated from the linear region of the pseudoelastic
stress-strain curve is high (~90 kPa), and the slope is low
(~1–1.5) (13, 38). Interestingly, the E0 value and slope of the
stiffness-stress curve of rDSM before preconditioning that
reflect viscosity and cross bridges (see Fig. 2B, A1 and C1)
were more similar to those identified for dog elastic artery than
the values of rDSM after preconditioning that reflects elasticity
(see Fig. 2B, A7). Thus, unlike aorta, rDSM when exposed to
Ca2�-free or Ca2�-containing solutions appears to utilize ad-
justable actomyosin cross bridges and viscosity at low-stress
values to oppose expanding stresses. When slowly cycling,
cross bridges would be expected to slip upon loading, permit-
ting accommodation. During the loading induced by a further
increase in vesicular volume, rDSM elasticity, which has a
higher stiffness-stress slope and lower E0 value, would become
engaged due to load transfer to resist further expansion. In
summary, these data support the hypothesis that DSM viscosity
and actomyosin cross bridges act to resist muscle lengthening
at low stresses and short strains, and DSM elasticity acts at
higher stress and longer strains, possibly preventing extreme
distortion due to intermittent external mechanical insults (e.g.,
body movements). Alterations in actomyosin cross-bridge reg-
ulation may be expected to affect bladder compliance and the
sensation of urgency. Our model proposing that bladder com-
pliance is acutely adjusted during filling identifies actomyosin
cross-bridge regulation as a novel target for potential therapeu-
tic intervention of bladder dysfunction involving bladder over-
and underactivity.

Study limitations. Our study did not determine whether
nonmuscle myosins contributed along with smooth muscle
myosins to compliance regulation. Moreover, our study cannot
rule out the possibility that other proteins acted in concert with
cross bridges. In particular, our study used a nominally Ca2�-
free solution to abolish Ca2�-dependent rhythmicity and per-
mit compliance analyses without the interference of spontane-
ously active contractions. Certain extracellular proteins in-
volved in intercellular coupling, such as cadherins, also are
Ca2� sensitive and may have been affected by our nominally
Ca2�-free solution. To address this issue, we provided data in
which tissues incubated in a Ca2�-containing solution were
treated with the Ca2� channel blocker nifedipine to lower
intracellular Ca2�. The strain softening induced by a load-
unload cycle in this tissue was similar to that induced in tissues
exposed to a Ca2�-free solution (see Fig. 2A, dashed-dotted
lines compared with solid lines), suggesting that extracellular
Ca2�-dependent proteins did not play a role. However, this is
a preliminary finding (n � 1), and a more definitive conclusion
on this issue will require a more extensive analysis.

Potential clinical relevance. The urinary bladder is highly
compliant, permitting accommodation of high urine volumes at
low vesicular pressures. The present study identifies the mo-
lecular mechanism of bladder compliance as actomyosin cross-
bridge slippage. Because cross bridges are regulated during
bladder filling, these data indicate that the state of detrusor
smooth muscle activation determines the degree of bladder
compliance.
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