
G1 JIDEL INES FOR DEVELOPING VECTORIZABLE
COMPUTER PROGRAMS

E.W. Miner

Naval Research Laboratory
Washington, D.C. 20375

SUMMARY

This paper presents some fundamental principles for developing computer programs which are com-
patible with array-oriented computers. The emphasis is on basic techniques for structuring computer
codes which are applicable in FORTRAN and do not require a special programming language or exact a
significant penalty on a scalar computer. The intent is that researchers who are using numerical tech-
niques to solve problems in engineering can apply these basic principles and thus develop transportable
computer programs (in FORTRAN) which contain much vectorizable code. These principles are based
primarily on the author’s experience in running programs on the Texas Instruments Advanced Scientific
Computer (TI-ASC), a vector processor, at the Naval Research Laboratory. The vector architecture of
the ASC is discussed so that the requirements of array processing can be better appreciated. The “vector-
ization” of a finite-difference viscous shock-layer code is used as an example to illustrate the benefits and
some of the difficulties involved. Increases in computing speed with vectorization are illustrated with
results from the viscous shock-layer code and from a finite-element shock tube code. The applicability of
these principles has been substantiated through running programs on other computers with array-
associated computing characteristics, such as the Hewlett-Packard (H-P) 1000-F.

INTRODUCTION

The past decade has seen some considerable changes in the capabilities available to researchers
involved in computational physics. Near the beginning of the last decade, scalar computers were the
standard, but computers which would achieve higher computational speeds through parallelism or pipelin-
ing were already in the design stage and creating excitement among researchers. For example, the lead
paper at the AIAA Computational Fluid Dynamics Conference in 1973 (ref. 1) was devoted to the future
vector and parallel processors, their hardware, and their anticipated usefulness to the computational phy-
sics community. Since then, vector computers and other array oriented processors have become an actu-
ality. The principal vector computers, for example, the CRAY-1, are still rather few in number and thus
are available only to limited groups of researchers. However, other, more widely available computers
have significant array-oriented features. In addition to the category of attached array processors, some
mini-computers have array processing features. Specifically, the Hewlett-Packard (H-P) 1000-F series
computers have what is called a Vector Instruction Set (VIS) implemented in firmware (microcode)
which provides many of the benefits of vector programming and can increase computational speed by a
factor of five or more. Even desktop computers (for example, the Tektronix 4050 series and the H-P
System 35 and 45 desktops) have array oriented computational features in the BASIC language which
they use. Thus, awareness of guidelines for developing computer codes which are compatible with
array-oriented computing (i.e., vectorizable) should be advantageous to many researchers. Development
of vectorizable codes should enhance code interchange and minimize reprogramming efforts when codes
are exchanged between different computers.

393

https://ntrs.nasa.gov/search.jsp?R=19820015621 2020-03-21T09:28:18+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42856759?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Numerical techniques used by researchers to solve problems in computational physics typically are
array oriented but common coding procedures sometimes reduce their compatibility with array process-
ing. Such was the case with the particular program (a large boundary-layer type program) which is used
as an illustration in this paper. By applying basic principles of “vectorization” as discussed in this paper,
codes can be developed which are compatible with array processing and which require only a minimal, if
any, increase in computing time on a scalar computer. In the case of the example program, the process
of vectorization led to some code optimization and the scalar computing time was actually reduced.

Since FORTRAN is the most commonly used engineering programming language, attention is res-
tricted in this paper to increasing the compatibility with array processing of programs coded in FOR-
TRAN and is further restricted to FORTRAN code which is transportable. Although some of the exam-
ples used are specific to the Texas Instruments (TI) Advanced Scientific Computer (ASC), a vector pro-
cessor, the examples illustrate considerations and techniques for developing codes which are compatible
with array processing.

THE CONCEPT OF VECTORIZATION

In order to develop code which is vectorizab!e, it is necessary first to understand what vectorization
is and how an array-oriented or vector computer differs from a scalar computer. The concept of vectori-
zation is most easily introduced by example. Consider arrays A and B, each consisting of 100 numbers.
Assume that one wishes to compute array C where ci = ai + bi, i = 1,100. The traditional scalar computer
executes five assembly language instructions one hundred times. There are two memory fetches (a, and
b,), one addition, one store to memory (for ci), and an instruction that increments a counter, tests and
branches back to load the next pair of input operands. Thus 500 scalar instructions are executed to add
arrays A and B. A vector computer, or an array processor, has hardware which performs the 100 addi-
tions on the hundred pairs of input operands concurrently with the memory fetches and the stores to
memory, greatly reducing the time required for computing array C. Such vector handware may be avail-
able for virtually every arithmetic and logical operation.

The above example describes the singly subscripted FORTRAN DO loop:

DO 100 I=l,lOO
C(I) = A(I) + B(I)

100 CONTINUE

Doubly or triply subscripted arrays in loops nested 2 or 3 levels deep also may be collapsed on a vector
machine into a single vector instruction.

Any FORTRAN DO loop representing one operation performed unconditionally on elements of
one or two input arrays and producing elements of one output array is a candidate for a vector instruction
and is thus vectorized. Vectorization may then be defined as getting as many operations as possible to
vectorize. This requires designing, organizing, and writing programs so that the maximum possible
number of arithmetic and logical operations can be executed as hardware vector instructions. Further,
vectorization will be maximized when a programmer plans to operate on arrays of data instead of indivi-
dual points of data. Such planning takes place at the program design level, at the subroutine level and at
the line level within each subroutine.

ARRAY-ORIENTED PROGRAMMING

While vectorization is achieved by array-oriented programming, applications to specific computers
may impose quite different constraints. For example, the attached support processors seem to be con-
strained by modest data transfer rates to and from the main computer’s central memory. Thus the pro-

394

grammer would need to organize calculations such that many operations would be performed on the
transferred data. In contrast, vector computers, such as the TI-ASC, can readily access large amounts of
main memory and the vector architecture permits very rapid transfer of large arrays of data between the
arithmetic units and main memory. In this case, the programmer needs to be less concerned with how
the calculations are organized and can concentrate more fully on array-oriented programming.

For either hardware situation, array-oriented programming will require the following: choosing
array-oriented algorithms which are vectorizable, planning program units which operate on arrays of data
instead of points of data, minimizing the use of conditional operations, and planning array storage in
memory for most rapid data transfer. These items are discussed more fully below.

Conditionality

A DO loop is the FORTRAN programmer’s idiom for representing operations on arrays of data.
The loop

DO 100 1=1,50
D(I) =A(I)*B(I) +C(I)

100 CONTINUE

represents two vector instructions; one which multiplies A and B, element-wise, and one which adds the
elements of the product array to the elements of array C. The two instructions execute serially; the vec-
tor addition follows the vector multiplication. If this loop contains conditionality, e.g.

DO 100 I= 1,50
IF(I.EQ.ITEST(I)) GO TO 100
D(1) =A(I)*B(I) +C(I)

100 CONTINUE

it is no longer vectorizable. In this case the multiplication and addition may take place on some, but not
all, of the array elements. An arithmetic or logical operation is vectorizable only if it is performed
unconditionally on all elements of one or two input arrays to produce one resultant array.

Conditionality (the if-test) is often intrinsic to a computation, but significant vectorization may be
achieved in the face of conditionality. A conditional operation can sometimes be transformed into one
which is not conditional. Consider the loop

DO 100 I= 1,500
IF(D(I).GT.DMAX) D(I)=DMAX

100 CONTINUE

which tests each element of array D and replaces only those values which pass the test. In the equivalent
replacement loop

DO 100 1=1,500
D(I) = AMIN (D(I),DMAX)

100 CONTINUE

conditionality is eliminated and the operation is potentially vectorizable. In fact, vector machines may
invoke a vector AMIN function which calculates the resultant vector D as a sequence of vector instruc-
tions on input vector D and scalar DMAX. Such vector functions are explained in a later section entitled
“Vector Library Functions.” Eliminating the “if-test” and consequently achieving array operations instead

395

of scalar operations reduces the run time of the above example loop from 0.86 x 10m3 seconds to 0.4 x
10m4 seconds on the vector computer at NRL, a TI-ASC.

When using a vectorizing compiler an “if statement” within a loop will often inhibit vectorization of
subsequent statements in the loop which are vector in character. Removing the “if-test” from the loop,
or breaking the loop into several.shorter loops, may result in significant vectorization. When the loop

DO 100 1=1,500
IF (X(I).GT.XMAX) X(I) =XMAX
A(1) =C(I)*D(I) +X(I)

100 CONTINUE

is replaced by two loops

DO 100 1=1,500
IF (X(I).GT.XMAX) X(I) =XMAX

100 CONTINUE
DO 110 1=1,500
A(1) =C(I)*D(I) +X(I)

110 CONTINUE

its ASC execution time decreases from 0.17 X 10e2 seconds to 0.12 x 10e2 seconds. When conditional-
ity is eliminated totally by using vector library function AMIN, the time drops to 0.86 x 10p4. Minimiz-
ing the ill effects of conditionality is a central theme in the development of code which is compatible with
vector computers and array processors.

Subroutine Organization for Array Operations

The fundamental principle for subroutine design is: plan, organize, and create subroutines which
operate on arrays of data instead of points of data. For example, the program

PROGRAM MAIN
DIMENSON A(100),B(100)$(100)
DO 20 I=l,lOO
CALL SUB1 (A(I),B(I),C(I))
CALL SUB2 (A(I1,B(I),C(Ill
CALL SUB3 (A,(I),B(I),C(I))

20 CONTINUE
END

locks the computation into scalar operations on points ai,bi,ci and requires that the three subroutines be
called 100 times each. The program above should be replaced by

PROGRAM MAIN
DIMENSION A(l00),B(100),C(100)
CALL SUBI (A,B,C)
CALL SUB2 (A,B,C)
CALL SUB3 (A,B,C)
END

where each subroutine operates on arrays A,B,C. This structure not only permits vectorized computation
and but also minimizes costly subroutine linkage.

396

Vector Library Functions

Vectorizing compilers are built to apply the fundamental vectorization principle for subroutines. If
a programmer codes

DO 100 I=l,lOO
B(I) =SIN(A(I))

100 CONTINUE

a vectorizing compiler can be expected to collapse the loop into a single call to a vector sine function
with input vector A and resultant vector B.

Scalar computers have one system FORTRAN library. When a trigonometric function, square-root,
maximum/minimum function, etc. is invoked, a point-wise (scalar) function is called with a scalar
answer. Vector computers have such scalar functions, and, in addition, have a library of vector functions
which operate on arrays of points. Vector functions are themselves vectorized. Five hundred sine calcu-
lations on the ASC take 0.11 x 10-t seconds when done in scalar mode and 0.16 x lop2 seconds in vec-
tor mode.

Algorithms and Mathematical Methods

Vectorization principles governing the choice of algorithms and mathematical methods may be
deduced from the line level and subroutine level principles previously discussed. Methods chosen should
involve significant unconditional computation on large arrays of data. Algorithms which entail more
arithmetic operations may be preferred over those involving fewer arithmetic operations which do not
vectorize.

On the ASC, recursive computations are intrinsically unvectorizable. Consider the loop

DO 100 I=2,100
A(I) =A(I-l)*B(l)

100 CONTINUE

where each element cl; of array A is computed from the element just previously computed, o;-~. If this
loop were performed in a vector mode, it would be equivalent to

DO 100 I= 1,100
AA(I) =A(11

100 CONTINUE
DO 110 I=2,100
A(I) =AA(I-l)*B(I)

110 CONTINUE

which yields different results from the original recursive code. The vectorizing compiler flags such loops
as “vector hazards” and does not generate vector instructions for them.

When a recursive computation is required, it may be done in a loop by itself, isolated from other
calculations. This prevents the vector hazard which it presents from inhibiting vectorization of subse-
quent calculations.

397

Memory Management

Vector instructions are most efficiently executed when the elements of operand arrays are stored, in
central memory, contiguously with respect to the computation. The FORTRAN code

DIMENSION A(10,50),B(50)
DO 100 1=1,50
A(K,I) =A(K,I)*B(I)

100 CONTINUE

exhibits non-contiguity for input operand A. The FORTRAN dimension statement declares that A is a
2-dimensional array and is stored column-wise in central memory. The multiplication occurs, element-
wise, on a row or A. Thus every 10th value of A as it resides in memory is input and output to this
computation. This substantially reduces the speed of the vector computation. A preferable coding for
this situation would be

DIMENSION A(50,10),B(50)
DO 100 K=l,lO
DO 100 I=1,50
A(I,K)=A(I,K)*B(I)

100 CONTINUE

With this arrangement (A is transposed) data streams from memory to the arithmetic unit quickly
enough to ensure maximal execution speed.

Summary of Programming Principles for Vectorization

This list summarizes principles and guidelines already presented:

0 Plan programs and subroutines which operate on arrays of data instead of points of data.

0 Choose algorithms and mathematical methods which are array-oriented and vectorizable.

0 Minimize and/or eliminate conditionality.

l Do not follow non-vectorizable calculations by vectorizable calculations in the same DO loop.

l Store vector operands contiguously in Central Memory.

THE TEXAS INSTRUMENTS ASC. A VECTOR COMPUTER

The rationale for developing computer codes compatible with array processing may be better appre-
ciated by consideration of a specific system as an example. In some ways, the TI-ASC is a representative
vector computer. The vectorizing FORTRAN compiler developed for the ASC recognizes array construc-
tions in standard FORTRAN and generates vector instructions when appropriate. While it requires the
programmer’s attention to vectorization principles in the code, the compiler does not require special syn-
tax or FORTRAN dialect to generate vector instructions. The ASC system thus illustrates the vectoriza-
tion principles discussed above.

ASC Architecture

Three architectural features distinguish the Texas Instruments (TI) Advanced Scientific Computer
(ASC). It is a pipeline computer; it has a full set of hardware vector instructions in addition to a full set
of scalar instructions; and it is a multi-pipe computer.

398

An ASC arithmetic unit (AU) is logically and physically organized as a twelve-level pipe. Four lev-
els are devoted to instruction decoding and processing, and eight to arithmetic or logical sub-operations.
Thus when the AU is operating in scalar mode, up to twelve operations are concurrently at some stage of
execution. At each CP clock cycle (80 nanoseconds) each arithmetic or logical operation in progress in
the pipe drops to a lower level, and one answer may exit to the memory buffer. Pipe levels unnecessary
to a particular instruction are bypassed. Memory buffers are considered part of the pipeline. Operands
for calculations and answers are fetched and stored while the calculations are progressing through the
pipe.

The most powerful computational capability of the ASC is its ability to run in vector mode. In this
situation, a single operation is performed on many pairs of operands. For example, if A, B and C are vec-
tors of length 100, only one vector instruction is needed for computing ci = ai + bi; i = 1, 100. The A
and B values stream continuously into the pipe, additions are performed in discrete steps within the pipe
and answers flow back to central memory at the rate of one per clock cycle. The power of the vector
instruction is that it guarantees optimum flow of calculations and data through the pipe.

An ASC may have one, two, three, or four pipes. The NRL computer has two pipes and, for fully
optimal codes, can provide twice the computing power of a single pipe ASC.

The ASC Vectorizing Complier

A vectorizing/optimizing FORTRAN compiler, known as “NX”, is available on the ASC. This
compiler transforms ordinary FORTRAN code into vectorized object code which optimally exploits the
ASC vector architecture. The NX compiler recognizes vectorizable FORTRAN constructions. When it
fails to generate vector instructions, messages to the programmer may suggest how to rearrange or
modify the code to achieve vectorization.

The NX compiler has three major levels of optimization. When invoking the compiler, a user
specifies either I, J, or K level. An I level compile generates efficient, but unoptimized, scalar code. It is
comparable to code generated by the IBM FORTRAN H compiler with OPT=0 or 1. At J level, the NX
compiler generates optimized scalar code much like the IBM H compiler with OPT=2. Operating at level
K, the NX compiler generates vectorized object code where possible, optimized scalar code elsewhere,
and writes vectorization summaries and messages.

VECTORIZATION OF VISCOUS SHOCK-LAYER CODE AND
COMPUTING TIME REDUCTIONS

To illustrate the process of vectorizing an existing code and to show the benefits which might be
obtained, the vectorization of a moderately large FORTRAN program is discussed.

Description of Viscous Shock-Layer Program

The computer code which was vectorized is a laminar, hypersonic viscous shock-layer code previ-
ously developed by the author, (references 2-4). The code was written in FORTRAN and developed on
an IBM 370/158. As discussed in references 2-4, the program uses an implicit finite-difference, marching
integration procedure to solve the viscous shock-layer equations. Two flow field chemistries were avail-
able: dissociating oxygen and multi-component, ionizing air. As in the previous work of Davis (ref. 51,
the governing equations are second-order accurate in the inverse Reynolds number parameter E from the
body to the shock.

By some criteria, the code might be a poor candidate for vectorization. The program has a
significant amount of scalar code and, with 51 grid points used across the viscous layer, the arrays or vec-

399

tors are much shorter than the vectors of length of 300 or more which have been often suggested for
efficient pipeline use. In two ways this code is typical of large computer programs commonly used in solv-
ing engineering problems. First it was developed on a scalar processor, and second, efforts were made
during its development to write code requiring minimum memory, not to write code that would vector-
ize. It was also coded in readily transportable FORTRAN. The size of the code, about 3000 FORTRAN
statements, is perhaps typical of moderately large programs in use in solving engineering problems.

Computing Time Reductions

Since FORTRAN as implemented on the TI-ASC is very similar to IBM 370 FORTRAN, no
changes were needed to run the code on the ASC. Runs were made to verify that the calculations of
skin friction and surface heat transfer agreed with previously published results (ref. 2). After verifying
the accuracy of the computed results, the program was compiled using the NX compiler at level I (no
vectorization), and runs were timed. Other runs were made with the code compiled at J level to deter-
mine the gains in computing speed with scalar optimization and at K level to determine how much of the
code would vectorize without further modification. Computing times for the viscous shock-layer code on
the TI-ASC are given in table 1. The first three lines, for the “scalar” version of the code, give the times
for the runs mentioned above. The optimiztion of the object code at J level reduced the computing time
by 16%. At K level, enough code with in DO loops vectorized for an additional six percent reduction in
the computing time.

As discussed earlier, it is often possible to get statements, which did not originally vectorize, to
vectorize with only minor recoding. Recoding segments of the most repetitively used routines reduced
computing time by a factor of 4. The computing time for the vectorized code is given in line 4 of table
1.

In vectorizing the code, it was necessary to add additional statements. The vectorized code con-
tained 3497 FORTRAN statements compared with 3176 statements for the scalar version, though some
of the additional statements were non-executable (e.g. DIMENSION and COMMENT) statements. The
additional statements did not increase computation time when the vectorized version was run in a scalar
mode. Line 5 of table 1 gives the computing time for the vectorized version of the code when compiled
using the I (scalar) level of the NX compiler. Comparing the times in lines 1 and 5 shows a slight (4%)
reduction in computing time for the vectorized version of the code when run in a scalar mode compared
with the unvectorized version. The code in the vectorized version is just as transportable as the code in
the scalar version and would be expected to run faster on a scalar processor than did the original code.

Table 1 shows the large reduction in time which was obtained by vectorizing the code. Table 2 lists
the computing times for the code as various subroutines were modified. Most reductions in computing
time were incremental except for subroutines VISCNA and WISUB which gave major reductions. These
two subroutines calculate species and mixture properties at each point across the viscous layer. In the
original code, the outer loops had the larger range (across the layer) and the inner loops had the smaller
range (over the number of species, for example). While loops of length 6 will vectorize, the speed is
comparable to scalar code speed. Most of the computing time reduction for these two routines was
obtained by rearranging the loops so that the inner loops had the larger range and by eliminating condi-
tionality from the inner loops. This gave typical vector lengths of 51 which run much faster than scalar
speeds. It was also necessary to “code around” the exponentiation function (X**Y> which is not yet
implemented as an ASC vector library function. Other runs were made with the viscous shock-layer code
to determine how the number of grid points used in the program affected the computing time. These
runs showed that increasing grid resolution is much less costly with a vectorized code running on a vector
processor than with a scalar code running on a scalar processor.

400

We also considered how memory requirements are affected by vectorization and how scalar optimi-
zation affects computing time with the vectorized code. In many instances, the code had used scalar
temporary variables within loops to conserve memory. In vectorizing the code, the scalar temporary vari-
ables caused problems. Either vectorization was inhibited or very inefficient vector code was generated by
the NX compiler. By converting the scalar temporary variables to array temporary variables, the prob-
lems were overcome; but at the cost of some increase in memory requirements. However, the increase
in memory can be minimized by storing the temporary arrays in a scratch common block which can be
shared between routines.

A more complete discussion of the reductions in computing times for the viscous shock-layer code
has been given by Miner and Brooks (ref. 6). Further information on the TI-ASC architecture and ASC
programming considerations is given in references 6 and 7.

VECTORIZATION OF SHOCK TUBE CODE

During the past year, the author has had the opportunity to work with a shock tube code and make
some vectorization tests with it. This particular code is a relatively small research code. It had been
developed to investigate ways of solving the shock tube equations using a finite-element spatial discreti-
zation and various finite-difference techniques for the time integration. The program was developed (in
mostly standard FORTRAN) on a minicomputer, a Hewlett-Packard (H-P) 1000-F. During develop-
ment, the program was coded in standard FORTRAN and the firmware routines of the Vector Instruction
Set (VIS) were not used.

The Vector Instruction Set is a group of firmware routines on the H-P 1000-F series computers and
a group of equivalent software routines on the other H-P 1000 computers. The appropriate arithmetic
operations have corresponding routines, and each routine is equivalent to a “DO” which performs that
particular operation. The routines cannot be interrupted by the program logic and thus the programmer
cannot include conditionality in these pseudo DO loops. The conditionality might still be coded, but it
doesn’t inhibit vectorization of neighboring code. A disadvantage of the VIS is that the programmer
must vectorize the code explicitly by “commenting out” the old DO loop and inserting the VIS routine
calls. This process can be somewhat cumbersome but not overly so. Since the readability of the code is
reduced, it is convenient to retain the original code in comment lines. The principal factor motivating
the use of the H-P VIS was not the cost of running the code on the H-P 1000 but the long execution
time, thirty-five minutes. Fortunately, vectorizing the shock tube code was neither difficult nor time
consuming. The vectorization was done in several stages and test runs were made to check results and
computing time reductions. After the code had been mostly vectorized, an operations count indicated
that about 95% of the candidate arithmetic operations had been replaced by vector routine calls. The
computing time was reduced by a factor of six from 2100 seconds to 350 seconds.

It was also of interest to determine the computing times for this code on the TI-ASC. Runs were
made with both the vectorizing NX compiler and the non-optimizing, non-vectorizing FX compiler.
Since the FX compiler neither optimizes nor vectorizes the object code which it produces, it executes
quite rapidly and is normally used for short test runs and code debugging. The resultant object code can
be expected to execute slightly slower than the code from the NX compiler in level I. The nominal
advantage of the FX compiler can be seen in the fact that it needed only 0.5 seconds to compile the
shock tube code while the NX compiler in level K (vectorizing) required 8.0 seconds. The disadvantage
of the FX compiler is really only in comparison to the vectorizing NX compiler. The shock tube code
compiled using the FX compiler required 103.5 seconds to execute, while the NX-level K (vectorized)
object code executed in only 6.25 seconds. For the shock tube code there was a much larger speed
increase than for the viscous shock-layer code discussed above primarily because the shock tube code
contained less scalar code and vectorized more completely.

401

Table 3 summarizes the computing times and relative computing speeds for the shock tube code.
On the H-P 1000 vectorization increased the relative computing speed by 6, and on the ASC vectoriza-
tion increased the computing speed by 16. The shock tube code provides an additional example of the
potential benefit of designing a computer code so that vectorized object code can easily be generated.

SUMMARY

This paper presents some basic principles for writing FORTRAN code which is compatible with
array processing. Many of these principles exact little, if any, penalty in computing time or memory
requirements when used on scalar computers. All can be implemented in standard, transportable FOR-
TRAN. When such guidelines are followed, substantial reductions in reprogramming effort will occur if
the program is run on an array-oriented computer. Since vector computers, array processors and other
array oriented computers are becoming more widely available, easy transportability between scalar and
vector computers is a significant, desirable feature of FORTRAN programs.

These principles are illustrated by applying them to a viscous shock-layer code which was written
for a scalar computer and then transported to the Texas Instruments Advanced Scientific Computer, a
vector machine.

FORTRAN compilers and other software can be expected to recognize vectorizable FORTRAN
constructions. The programmer must, however, be responsible for appropriate array-oriented program
design, organization, and attention to the details of vectorization.

1.

2.

3.

4.

5.

6.

7.

REFERENCES

Feustel, E. A.; Jensen, C. A.; and McMahon, F. H.: Future Trends in Computer Hardware,
Proceedings of AIAA Computational Fluid Dynamics Conference, pp. 1-7, Palm Springs, CA.,
1973.

Miner, E. W. and Lewis, C. H.: Hypersonic Ionizing Air Viscous Shock-Layer Flows over Sphere
Cones, AIAA Journal, Vol. 13, January 1975, pp. 80-88.

Miner, E. W. and Lewis, C. H.: Computer User’s Guide for a Chemically Reacting Viscous Shock-
Layer Program, CR-2551, NASA, May 1975.

Miner, E. W. and Lewis, C. H.: Viscous Shock-Layer Flows for the Space Shuttle Windward Plane
of Symmetry, AIAA Journal, Vol. 14, January 1976, pp. 64-69.

Davis, R. T.: Numerical Solution of the Hypersonic Viscous Shock-Layer Equations, AIAA Journal,
Vol. 8, May 1970, pp. 843-851.

Miner, E. W. and Brooks, B. J.: Comparative Computer Times Between Vectorized and Scalar Ver-
sions of a Large Hypersonic Viscous Shock-Layer Code, AIAA Paper 78-1207, Seattle, WA., 1978.

Brooks, B.; Brock H.; and Miller, M : Guide to Vectorization on the Naval Research Laboratory’s
Texas Instruments Advanced Scientific Computer: Volume 1 Vectorization Primer, Memorandum
Report 4102, Naval Research Laboratory, Washington, D.C., November, 1979.

402

I ABLE I.- CUMYAKIXJN UP CUMYU I INCi

TIMES ON THE TI-ASC FOR VISCOUS
SHOCK-LAYER PROGRAM’

Code Compiler
Version Levelb

Computing Time; set

scalar I 123.6
scalar J 104.1
scalar .K 98.1

vectorized K 25.5
vectorized I 118.7

‘Central Processor time, test case, 51 grid points across
viscous layer.

bl level-scalar code only; J level-optimized scalar code; K
level-vectorized code with scalar optimization.

TABLE 2.- COMPUTING TIMES ON THE TI-ASC
AS SUBROUTINES VECTORIZEDa

Subroutine
Vectorized ~__

- - -
DERIV3
SOLVE

ENERGY
SMOMNT
NMOMNT

SPECIE
THERM
WISUB

VISCNA

MASS
HCPA

-

Function of
Subroutine -

Base Line Case
Array Differentiation

Tridiagonal Solver
Energy Eq. Coefficients

S-Momentum Eq. Coefficients
N-Momentum Eq. Coefficients

Species Eq. Coefficients
Thermodynamic Properties
7 Species Production Terms

7 Species Viscosity and
Conductivity

Continuity Eq. Integration
Interpolation for H and C,

Computing Time; set

98.07
96.59
96.16
95.97
96.04
95.80
95.19
93.84
62.37

27.52

27.37
25.50

aCentral Processor time. 51 grid points across viscous layer

TABLE 3.- COMPUTING TIMES AND SPEEDS
FOR SHOCK TUBE COMPUTER CODE

‘Central Processor time

bCP time on the ASC with FX is estimated to be equivalent to CP time on an
IBM 370/168.

403

