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FOR EWARD 

Reports Hypersonic Ionizing Air Viscous Shock-Layer 

Flows Over Nonanalytic B1 unt Bodies (CR-2250) and Computer 

User's Guide For a Chemically Reacting Viscous Shock-Layer 

Program (CR-2251) by Miner and Lewis should be used 

together as source or reference material. 



INTRODUCTION 

While supersonic and hypersonic flows over b l u n t  bodies have been of 

in te res t  i n  f luid dynamics fo r  many years, recent developments i n  aerodynamics 

and space f l i g h t  have increasingly focused attention on the problem of predict- 

ing  the blunt body flowfield. 

f i e ld  over the body is treated in two par ts ,  an inviscid outer flow and a vis- 

cous boundary layer. 

outer flow, as examples, the methods Inouye, Rakich and Lomax,’ Rizzi and 

Inouye,* and Kutler, Reinhardt and Likewise, many methods have been 

devel oped for  solving the boundary-1 ayer f 1 ow; two particular examples are  the 
4 5 methods of Blottner and Flugge-Lotz and Blottner. 

In the approach most commonly used, the flow- 

Many methods have been developed for  solving the inviscid 

This approach t o  the problem generally worked qui te  well. I t  i s ,  however, 

most appropriate fo r  supersonic, h i g h  Reynolds number flows. As in te res t  i n  

hypersonic, low Reynolds number flows increased ( for  example, for  reentry 

applications, including the space shu t t l e ) ,  problems were encountered i n  apply- 

i n g  f i r s t -order  boundary-layer theory t o  such flows. 

such as displacement-thickness interaction, were par t ia l ly  met by u s i n g  second- 

order boundary-layer theory, as an example the work of Lewis.6 Another problem 

of the boundary-layer methods i s  determining the edge conditions. For super- 

sonic, high Reynolds number flows, in which the boundary-layer i s  t h i n  compared 

t o  the shock layer thickness and more specifically the entropy layer thickness, 

Some of the problems, 

1 



i t  is  generally adequate t o  consider the conditions a t  the boundary-layer edge 

t o  be the same as given by the inviscid solution a t  the body surface. 

hypersonic, low Reynolds number flows i n  which the boundary layer is  not t h i n ,  

determining the edge conditions for  the boundary layer can be most d i f f i cu l t  

(see,  for example, Ref. 6 ) .  

optionally determined by tracking stream1 ines from the shock crossing p o i n t  

t o  the boundary-1 ayer edge or by entropy-1 ayer swal 1 owing . 

For 

In the method of B l ~ t t n e r , ~  edge conditions were 

Many of the problems (including those mentioned above) associated w i t h  

computing viscous, hypersonic flows over blunt bodies can be overcome by the 

viscous shock-layer approach i n  which the en t i re  flowfield from the body t o  

the shock i s  treated i n  a unified manner. 

s t i l l  required ( t o  determine the flow properties behind the shock), b u t  

problems such as those of streamline tracking and displacement-thickness 

interaction a re  avoided. 

ing viscous shock-layer methods, the one who achieved perhaps the greatest  

degree of success was Davis. 

Knowledge of the shock shape i s  

While many researchers have been involved i n  develop- 

7 ,8 

An a1 ternative approach t o  obtaining solutions for  hypersonic blunt body 

flows has been the use of the f u l l  Navier-Stokes equations, for  example, the 

method of Jain and Adimurthy. '"O Such methods have been qui te  successful in 

providing solutions for  the stagnation region b u t  generally have been applied 

only about one nose r ad ius  downstream. 

equations , a t  1 east  i n the physical coordi nates, increases the compl exi ty  of 

the solution procedure and r e s t r i c t s  the application of the methods in the 

downstream di rec t i  on. 

Further, the e l l i p t i c  nature of the 

The f i r s t  objective of the present research was t o  develop a method for  

predicting hypersonic, low Reynolds number flowfields over nonanalytic b l u n t  

2 



bodies w i t h  p a r t i c u l a r  emphasis f o r  the  s h u t t l e  o r b i t e r  windward plane o f  

symmetry. 

cou ld  n o t  be r e s t r i c t e d  t o  the  s tagnat ion  region. 

The downstream reg ion  was of considerable i n t e r e s t  and the  method 

A second o b j e c t i v e  was 

t h a t  t he  method would n o t  be sub jec t  t o  the  problems invo lved  i n  app ly ing  

boundary-layer theory  t o  such f lows (problems such as displacement- th ickness 

~ i n t e r a c t i o n  and stream1 i n e  t r a c k i n g ) .  

Both ob jec t i ves  were p a r t i a l l y  met by the v iscous shock- layer methods o f  

1 b u t  h i s  methods were r e s t r i c t e d  t o  a n a l y t i c  bodies such as hyper- 

1 bo lo ids  f o r  which the  pressure d i s t r i b u t i o n  was n e a r l y  Newtonian. Despi te  t h e  

7 Y8 r e s t r i c t i o n  t o  a n a l y t i c  bodies, the viscous shock- layer methods o f  Davis, 

~ 

had severa l  advantages. The p r i n c i p a l  equations were pa rabo l i c  i n  t h e  stream- 

1 w ise d i r e c t i o n ,  and thus the re  was no r e s t r i c t i o n  on o b t a i n i n g  downstream so lu -  
, 
1 t i o n s .  A f i n i t e - d i f f e r e n c e  method was used f o r  s o l v i n g  t h e  equat ions which 

gave very  good accuracy i n  reasonably s h o r t  computing t imes. 

q u i t e  impor tant ,  f o r  i nc reas ing  Reynolds numbers the  equat ions tend t o  f i r s t  

o rder  boundary-layer equations, and thus t h e  methods were n o t  r e s t r i c t e d  t o  

Fur ther ,  and 

o n l y  shock- layer f low regimes b u t  cou ld  a l s o  be app l i ed  i n  t h e  boundary-layer 

regime as w e l l .  

v iscous shock- layer equat ions.  

I n  f a c t ,  t he  boundary-layer equat ions a r e  a subset o f  t he  
I 

Before d iscuss ing t h e  present  work, t he  methods 

of Davis7 y 8  are  b r i e f l y  descr ibed. 

I n  Ref. 7, Davis developed a s e t  of viscous shock- layer equat ions f o r  a 

per fec t  gas v a l i d  f rom t h e  body t o  the  shock. The equat ions are  accurate f rom 

1 t h e  body t o  t h e  shock t o  second order  i n  the Reynolds number parameter, E .  

t h e  s o l u t i o n  procedure used by Davis, a f i r s t  g loba l  s o l u t i o n  was obta ined us ing  

I n  

I 

I 

i 
t h e  t h i n  v iscous shock l a y e r  (TVSL) assumption and subsequent g loba l  i t e r a t i o n s  

were f o r  a f u l l y  v iscous shock l a y e r  (FVSL) o r  f o r  TVSL. Davis considered o n l y  

3 



hyperboloids and, f o r  the  f i r s t  (TVSL) g loba l  i t e r a t i o n ,  used the  assumption 

t h a t  the  shock angle was t h e  same as t h e  body angle. 

i t e r a t i o n s  the  shock angle was computed from t h e  body angle and t h e  prev ious 

g loba l  i t e r a t i o n  value o f  t h e  shock- layer th ickness d e r i v a t i v e .  Th is  tech-  

n ique success fu l l y  gave the  c o r r e c t  shock shape f o r  t he  a n a l y t i c  bodies Davis 

considered. 

i n g  b inary  gas mixture.  The viscous shock- layer equat ions were subsequently 

extended by Moss" f o r  nonequ i l ib r ium a i r  (0, 02, NO, NO', N, N2 and e-)  and 

o the r  gas chemist r ies.  

I n  subsequent g loba l  

I n  Ref. 8 the  governing equat ions were extended t o  t r e a t  a r e a c t -  

I n  the present  work, the  v iscous shock- layer equat ions which f o l l o w  t h e  

fo rmula t ion  o f  Davis were so lved f o r  f lows over nonana ly t i c  b l u n t  bodies.  

present  method i s  f o r  nonequi l ibr ium,  multi-component, i o n i z i n g  a i r ;  d isso-  

c i a t i n g  oxygen i s  a l s o  inc luded.  

pared w i t h  the  p r e d i c t i o n s  o f  t h e  boundary- layer method o f  Tong, Buckingham 

and Morse" f o r  t h e  space s h u t t l e  o r b i t e r  windward p lane o f  symmetry a t  

224,000 f e e t .  P red ic t i ons  o f  t he  present  method a l s o  were compared w i t h  pre-  

d i c t i o n s  o f  p e r f e c t  gas boundary-layer f l o w  f rom t h e  method g iven i n  Refs. 13 

and 14, w i t h  p r e d i c t i o n s  o f  seven-specie, nonequ i l ib r ium boundary- layer f l o w  

us ing  the method descr ibed i n  Refs. 15 and 16, and w i t h  the  no - in jec t i on ,  

experimental data o f  Pappas and Lee.17 P red ic t i ons  o f  t he  present  method were 

a l s o  compared w i t h  the  r e s u l t s  Kang and Dunn 18-21 obta ined w i t h  a more approx i -  

mate i n t e g r a l  method. 

w i t h  the  p red ic ted  and exper imental  p r o f i l e s  g iven by Evans, Schexnayder, and 

Huber. 

The 

Pred ic t i ons  o f  t h e  present  method were com- 

Pred ic ted  e l  ec t ron  concen t ra t i on  p r o f  i 1 es were compared 

22 

4 



In the present work, the governing equations for the viscous shock-layer 

t o  tne shock region). A single set of equations i s  then obtained by retaining 

flows follow the formulation of and Moss.” The shock-layer equations 

and transverse curvature a re  included. 

viscous shock-layer equations were specialized fo r  a perfect gas or  a binary, 

As given by Davis, the governing 
7 

derive from the governing equations for  reacting gas mixtures (such as given 

by Bird,  Stewart and L i g h t f ~ o t * ~  or Williams ) written for  a body oriented 

coordinate system as shown i n  F ig .  1 .  The equations a re  f i r s t  nondimension- 

24 

alized by variables of order one a t  the body surface (corresponding t o  high 

Reynolds number, boundary-layer flows). The equations a re  also nondimension- 
I 

I 

shock-layer equations i s  uniformly second-order accurate i n  the inverse 

reacting mixture of oxygen atoms and molecules.8 Moss” gave the shock-layer I 
I equations fo r  a multi-component mixture o f  reacting gases. 

Governing Equations 
The equations for  shock-layer flows of multicomponent gases are  given below. 

Continuity Equation : 

5 



s -Momentum Equa t i  on : 

1 

y-Momentum Equation: 

a P  - K p u  2 1  - -  a v  (FVSL) 1+Ky p u  as - '" ay - - -  
ay 1tKy 

which becomes 

(TVSL) a P  - K 

ay 1tKy p' 
- - -  

i f  the t h i n  shock-layer approximation i s  made. 

Energy Equation: 

( )' - f h i  ii (4  1 E U  ay-1+KY 
i= l  

Species Conservation Equations: 

6 



where J i  i s  the d 

Equation of S t a t e  

ffusion mass flux term of species i ,  and 

p = P+ 

P" 
FtC 

With binary diffusion only and w i t h  constant binary Lewis numbers ( a l l  

equal), the diffusion mass flux term o f  t h e  species is given by 

Xi 
J~ = - Lei ay 

The species mass fractions are given by 

ci = P i / P  

The frozen specif ic  heat of the mixture is g i v e n  by 
ns 

cp = ci c 
P i  i =1 

and the mixture molecular weight i s  given by 

The preceding equations are nondimensional . The dimensional equations 

were nondimensional ized by the following relations:  
* * 

u = u u "  (W 
(1 1 b )  v = v u a  

(W 

(1 1 d )  

* * 

* "2 * T* = T Tref = T U /C 
" P" 

P * . P P "  * u*2 " 

* * 
P = P P ,  m e )  

(1W 
* * 

u = lJ lJref 
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k* = k p:ef C;, 
cp * = cp CEQ1 

(ml) 

(W 

( l l i )  

(1 1 j  1 

(1 1 k )  

(111 1 

h* = h U*2 Q1 

* - * * *  
w i  - wi P, U,/Rn 

* J; - - J i  P r e p ;  

s* = s R: 

Y* = Y Rn (1lm) 
* 

(m * -  * 
K - K R n  

and 
* 

r* = r R, (1 10) 

The dimensionless parameters which appear i n  the shock-layer equations are 

given by the following relations:  

* * *  Pr = C p  p / k  

E =  i- 
p, "00 Rn 

and 

Lei = p* C* D t / k *  (12c) P '  

For  the finite-difference solution procedure, i t  i s  advantageous t o  

transform the shock-layer equations. 

(except for  the species concentrations) are  normalized by t h e i r  local shock 

values. When the normal coordinate i s  normalized by the local shock-layer 

thickness, a constant number of f ini te-difference g r i d  points w i t h  constant 

spacing between the body and the shock can be used. Also, interpolation is  

The independent and dependent variables 

8 

_ -  



not needed t o  determine the shock location and g r i d  po in ts  i n  the normal 

direction need not  be added. 

The transformed independent and dependent variables are 

and 

Cp = c / c  
psh 

The transformations relating the differential  expressions are 

a -  l a  _ _ - -  
aY Ysh a n  

and 

where 

1 -  d's h 
ysh - dg 

9 



When w r i t t e n  i n  the  t ransformed [,n coordinates,  the s-momentum, energy 

and species c o n t i n u i t y  equat ions (Eqs. 2, 4 and 5 )  can be expressed i n  the  

f o l l o w i n g  standard form f o r  a pa rabo l i c  p a r t i a l  d i f f e r e n t i a l  equat ion:  

a 2w 
a n  

+ A2 W + A3 + A4 E- a W  - 7 + A 1  Fl 

- 
where W represents  

Ci i n  the species c o n t i n u i t y  equat ions.  The c o e f f i c i e n t s  A1 through A4 a r e  

func t ions  o f  t he  independent and dependent va r iab les  and may be w r i t t e n  as 

fo l l ows :  

i n  t h e  s momentum equat ion,  T i n  the  energy equat ion and 

s-momentum equat ion 

- ysh Psh 'sh - 

E 'sh ' 2 
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Energy equat ion 

2 .  
- 1 aTsh ysh '2 

2 A2 - *4 Gag- & ksh 

- 
ysh 'sh 'sh - ap 

2 k r a n  
Tsh sh 

I Species Conservation Equation 

I 11 



2 - 1  
= - y s h  Psh 'i 

J B  A2 

2 - 0  

JB 
- ysh 'sh 'i 

A3 - 

where 

I n  the transformed coord inates the  remaining equat ions a re  

Con t inu i t y  Equation 

y-momentum equat ion 

which becomes 

1 2  



i f  the thin shock-layer approximation i s  made, and 

State Equation - 
- - Msh P = p T -  

Fi 

The energy and species conservation equations (Eqs. 4 and 5)  include the 

ra te  of production terms, ii , of species i .  The li terms are functions of 

bo th  the temperature and the species concentrations. Blottner and Davis 

discuss the need for rewriting these terms so tha t  the temperature or the 

species concentrations appear as one o f  the unknowns. 

the production term i s  written so t h a t  the temperature appears as an unknown 

as given by Davis as 

5 8 

For the energy equation, 

8 

where k denotes the i te ra t ion  for which the solution i s  known and k+l the 

i te ra t ion  for which a solution i s  sought .  Accordingly, the production term 

in the energy equation ( E q .  4 )  was rewritten as 

ns 
F 

and the terms t1 and t2 appear i n  the energy equation coefficients (Eqs. 17b 

and 17c). 

written so t h a t  the species mass fractions appear as an unknown as 

For the species conservation equation, the production term wi., 

13 



0 - 1  b;Ji 
- -  i - ti - ci w 
P 

0 and the terms hi and Pi1 appear i n  the species conservation equation coeffi-  

cients (Eqs. 18b and 18c). 

The viscous shock layer for nonequilibrium chemistry i s  described by 

equations (15) through (21 ) together w i t h  the appropriate boundary conditions 

and relations for the thermodynamic and transport properties. 

Boundary Conditions 

A t  the body surface, the no s l ip  boundary conditions were imposed. For 

TI = 0,  the surface conditions a re  
- 
u = o  

v = o  
- 

and 
T = Tw ( 2 5 4  

where Tw is  e i ther  a constant or has a specified variation. 

surface, ( N C W ) ,  the species boundary conditions a re  

For a noncatalytic 

a C  
a n  0 - =  

The equilibrium ca ta ly t ic  wall (ECW) conditions a re  specified by 

C i  = C i  (Tw) 
eq 

In the present work the surface temperatures were suff ic ient ly  low t h a t  the 

ECW condition could be approximated by a fu l ly  ca ta ly t ic  surface (FCW) condi- 

t i o n  specified by 

C o  = 0,  C = 0.23456, C N o  = 0; CN = 0,  CNo+ = 0 and C 
O2 N2 

= 0,76544 (25f) 

14 



A t  the shock, the velocity components 

are not  the same as the components tangent 

The velocity components tangent and normal 

and i s h  and the components tangent and normal t o  the body surface a re  denoted 

as Us,, and V s h '  The transformation relat ing the two se t s  of shock velocity 

components i s  

tangent and normal t o  the shock 

and normal t o  the body surface. 

t o  the shock are denoted by i s h  

where 6 = ~ / 2  - 9. 
For shocks o f  f i n i t e  thickness called shock s l i p  (SS) ,  the shock properties 

are g iven  by the modifed Rankine-Hugoniot relations (see 

bel ow. 
Psh 'sh = - sin O! 

and Cheng 25 ) 

n 

(27a) 
A 

+ sin O! U s h  = sin O! cos O! 
2 

E 'Sh ($Ish 

A pa2 2 

Pm"m 

Psh - sin O! vsh = - + sin O! 

A [ (us ,  - cos a )  2 + sin 2 
- i s h ]  

s in  O! 

2 
ns 

i=l 
C i  h i  - - 

Q) sh 

ns 
= sin O! 2 Ci h i  

i =1 m m  

and 

+ sin a C i  Lei - = sin O! C i  
aci sh 2 'sh 

E -  

Prs h aY sh m 
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The q u a n t i t y  Psh i s  determined from t h e  equat ion o f  s t a t e  (6) a f t e r  determin ing 

PShy Tsh and C i  from Eqs. (27c), (27d) and (27e). 
sh 

species enthalpy a t  t h e  shock, hi 

be fore  Tsh i s  determined. 

I n  Eq.  (27d) above, t h e  

, i s  expressed d i r e c t l y  i n  terms o f  Tsh 
sh 

With no shock s l i p  (NSS) t h e  Rankine-Hugoniot r e l a t i o n s  a r e  used t o  

determine t h e  shock values. Eqs. (27a) and (27c) are unchanged. The expres- 
h 

s ions f o r  Us,,, Tsh and C become 
1-s h 

ns 

and 

ns 

i=l 
C i  h i  (28b) 

m m  

The shock cond i t ions  f o r  t h e  dependent v a r i a b l e s  ( a t  y = 1) a r e  

and 

ci = c 
ish 

The sur face 

f r i c t i o n  c o e f f i c  

by 
* 

Surface Transport  

s k i n  f r i c t i o n  and heat t r a n s f e r  

en t  and Stanton number. The sk 

16 

r a t e s  are g iven by t h e  s k i n  

n f r i c t i o n  c o e f f i c i e n t  i s  g iven 



where 

T W * =[.'$I 
W 

I n  terms of t h e  nondimensionalized var iables,  t h e  s k i n  f r i c t i o n  c o e f f i c i e n t  i s  

g iven by 

Cf  = 2E2 [. $1 
W 

The Stanton number i s  given by t h e  expression 
* 

or i n  t he  dimensionless va r iab les  

where 

L 

and 

2 qw = 'E 

o r  

ns 1 

w i t h  t h e  r e s t r i c t i o n  of constant and equal Lewis numbers. 
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The specific heat, Cp and s t a t i c  enthalpy, h ,  a re  required for  each of 

the species considered and for  the gas mixture. Also required are  the viscosity,  

p, and the thermal conduct v i ty ,  k .  

considered t o  be a mixture o f  thermally perfect gases, the thermodynamic and 

transport properties for  each species were calculated us ing  the local tempera- 

ture.  The properties for  the gas mixture were then determined i n  terms of the 

individual species properties. In this section a1 1 expressions are  presented 

i n  terms of dimensional quant i t ies ,  and the superscript s t a r  will not be used 

t o  denote dimensional quant i t ies .  

Since the multi-component gas mixture i s  

Thermodvnami c ProDerti es 

The enthalpy and specific heat of the species were obtained from the 

thermodynamic data tabulated by Browne. 26-28 Browne gave tables of specific 

heat and enthalpy versus temperature in gm cal/gm mole - O K  w i t h  the enthalpy 

as (H - H*)/T where H* was the heat of formation. 

units were converted as 

In the present work the 

A 49686 - H* ; ft2/sec2-OR 
Hi 1.98726 M i  T 

- - 

and 

h c = 1  ,98726 49686 M i  C p ;  ft2/sec2-'R 
pi 

A 

Second-order Lagrangian interpolation was used t o  obtain the values of H and 

e p  from the tables.  The species enthalpy and specif ic  heat were then obtained 

18 



from the  express i ons 

( 3 3 d  
hi = T fii t Ah!; ft 2 2  /sec 

and 

C = cpi; ft2/sec2-OR 
p i  

F where Ahi i s  the  heat o f  formation o f  species i. The tabu la ted  values o f  

enthalpy and s p e c i f i c  heat a re  g iven i n  Tables I and I1 and t h e  heats of 

format ion are  given i n  Table 111. 

Transport  Proper t ies 

The v i s c o s i t y  o f  each o f  t h e  i n d i v i d u a l  species was c a l c u l a t e d  from t h e  

curve f i t  r e l a t i o n  

29 where Ai, Bi and Ci a re  the  curve f i t  constants f o r  species f rom B l o t t n e r  

which are  g iven i n  Table I V  and Tk i s  t h e  l o c a l  temperature i n  degrees Kelv in .  

The u n i t s  o f  the  species v i s c o s i t y  were converted t o  l b f - s e c / f t  . 2 

The thermal c o n d u c t i v i t y  of the  i n d i v i d u a l  species was c a l c u l a t e d  f rom 

t h e  Eucken semi-empir ical  formula us ing  the species v i s c o s i t y  and s p e c i f i c  

heat  by t h e  expression 

A f t e r  t h e  v i s c o s i t y  and thermal c o n d u c t i v i t y  o f  t h e  i n d i v i d u a l  species 

were ca lcu la ted ,  t h e  v i s c o s i t y  and thermal c o n d u c t i v i t y  o f  the  m i x t u r e  were 

c a l  c u l  a ted  us ing  W i  1 ke s semi -empir ica l  r e 1  a t i  ons ; 
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j = l  

ns 

k=;l( 

i 

'i' i j  

xi k 
ns 

j=l 

l b f  
sec-'R (37 )  

where Xi = Ci K/Mi 

and oij = [ 1  +(:) 1/2 (e) M. 1/4 ] 2 [6( l  t$]1'2]-1 

I n  the present work, t h e  d i f f u s i o n  model i s  l i m i t e d  t o  b ina ry  d i f f u s i o n  

w i t h  t h e  b ina ry  d i f f u s i o n  c o e f f i c i e n t s  s p e c i f i e d  by t h e  Lewis number f rom 

Eq. (12c). 

Lei = p Cp Di/k 

The values o f  t he  Lewis numbers used were 1.4. 
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CHEMICAL REACTION MODEL 

In the present work, i t  i s  assumed that  the chemical reactions proceed a t  

a f i n i t e  r a t e ,  and the r a t e  o f  production terms, ii, of the individual species 

a re  needed. The production terms occur i n  the energy equation ( E q .  4 )  and the 

species conservation equations (Eq. 5 ) .  For a multi-component gas w i t h  ns 

d i s t inc t  chemical species and nr simultaneous chemical reactions the chemical 

reaction equations are  written i n  the general stoichiometric form 

where r = 1 ,  2 ,  ... nr and n j  i s  equal t o  the sum of the species and the cata- 

l y t i c  t h i r d  bodies. 

ca ta ly t ic  t h i r d  bodies, and the ar l  and @ri  are the stoichiometric coefficients 

f o r  reactants and products. The rates  a t  which the forward and backward reac- 

tions occur a re  specified by the forward and backward ra te  constants which a re  

given by the equations 

kf r  = Tk “r exp (cor - Clr/Tk) 

The quantit ies X i  represent the chemical species and the 

and 

where Tk  i s  the temperature i n  degrees Kelvin. 

DO,, 01, and D2, depend i n  part on the specific reaction equations chosen. 

The constants C o r y  ClrY C2,, 

In 
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the present work reaction ra te  constants were matched t o  those used by Evans, 

Schexnayder and HuberZ2 or by Kang and Dunn.” The reaction equations and ra te  

constants for  these two se t s  of d a t a  are given in Tables V and VI. 

constants were used for  t e s t  purposes (from Blottner2’ and from Blottner 

and are given in Tables VI1 and VIII. 

Other ra te  
30 

) 

With the forward and backward reaction ra te  constants given by E q .  (39) 

the net mass ra te  of production o f  species i per unit volume, w i ,  i s  given by 

the equation 

r= 1 

where 
n j  

j = l  
a r = E  a r j - 1  

j = l  

- 
p (gm/cm3) = 0.51536 p (s1ugs/ft3) 

For the ns species the mass concentrations y are given by the expressions 

y j  

j 

= & j = 1, 2 ,  ... ns 
22 



whereas for the ca ta ly t ic  third bodies the yi are given by the following 
J 

expressions 
ns 

= 1 Z(j -ns) , i  yi j = (ns+ l ) ,  ... n j  

i =1 

The quantity Z( j -ns ) , i  i s  the third body eff ic  

determined from the reaction being considered 

As discussed previously, i t  i s  desirable 

ency re la t ive  t o  argon and i s  

t o  rewrite the expression for 

the r a t e  of production terms so t h a t  the species concentrations appear as one 

of the unknowns. When rewritten in th i s  way, the ra te  of production terms are  

given by the expression 

'i - S O  . I  - - wi - w.  c 
P i i  

where 
n r  

nr 

r= l  I 

i f  ( B , ~  - cx ) > 0 r i  - 
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As discussed prev 

t ion terms rewritten w 

T h a t  form for  the rate 

i i / p  w i t h  respect t o  T 

for  the derivative i s  

ously, the energy equation required the ra te  o f  produc- 

t h  the temperature appearing as an unknown (Eq. 22) .  

of production term was a function of the derivative of 

W i t h  temperature i n  degrees Kelvin, T k ,  the expression 

(42) 

With the specification of the chemical kinet ics ,  the system of governing 

equations for  viscous shock-layer flows is  complete. 

As noted above, the r a t e  of production terms are for  nonequilibrium flows. 

As conditions approach equilibrium, the present technique encounters increasing 

d i f f icu l ty  i n  obtaining a converged solution, par t icular ly  a t  the stagnation 
8 p o i n t .  For dissociating oxygen, Davis following Blottner3' rearranged the 

ra te  of production terms so that  equilibrium conditions could be approached 

much more closely. 

follow the procedure of Davis ,8 and solutions may be obtained closer t o  equil i - 
brium with the dissociating oxygen model t h a n  with the multicomponent a i r  

model. 

which t h e  solution of the multicomponent air gas model computer code will 

n o t  converge. 

determined for  each vehicle based upon available data.  

For dissociating oxygen, the ra te  of production terms 

In  f a c t ,  a lower l imit  i n  a l t i t ude  or pressure currently ex is t s  below 

The lower l imit  depends on the body nose radius and must be 
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METHOD OF SOLUTION 

7 In the present work, a f inite-difference method (following Davis ) was 

used t o  solve the governing different ia l  equations for  the viscous shock-layer 

flows. The solutions for the continuity and n-momentum equations were obtained 

by integration w i t h  the trapezoidal rule .  The s-momentum, energy and species 

conservation equations were expressed in the standard form for  a parabolic 

par t ia l  different ia l  equation 

a2W 
a n  

+ A2 W + A3 + A4 a g -  aW - 2 + A 1 G  

7 These equations were. solved using the algorithm described by Davis. 

Solution for  S-Momentum, Energy and Specles Conservation Equations 

With the finite-difference grid as shown in Fig. 2 ,  Taylor ser ies  expan- 

sions are used t o  r e l a t e  the partial  derivatives t o  the function values a t  the 

f ini te-difference grid points. In the  6 direction the expansion for W i s  

Neglecting the terms of order ( A C ) ~  gives the difference quotient for aW/ag as 

In  the n-direction a variable grid spacing was used and the Taylor ser ies  

expansions are  
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Neglecting the terms of order ( A T - , )  3 the above equations combine t o  give the 

following difference quotients. 

and 

2 - -  a w - a + b ,,,n + wn--l 
a n  2 2 m  2 m  2 m  

where 
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A more general approach i s  t o  evaluate the partial  derivatives a t  

(m + 0 ,  n). The parameter o gives the following finite-difference schemes. 

0 expl ic i t  

1 /2  Crank Nicholson 

1 imp1 i c i t  

The difference quotient representation of the partial  derivatives in the 

n-direction then becomes 

aW n+l n - l )  t (1 - o)  (al  W;” + bl Wi + c1 Wm n-1 - =  o ( a ,  %+1 + bl WLl + c1 W w l  a n  

n 

aLW - 0 (a  Wn+’ + b Wn n -1 )  + (1 - o)  (a2 W;+l + b2 W; + c2 Wm n -1 )  2 m+l 2 m+l + ‘2 ‘m+l 
- -  

2 a n  
(46b 1 

Also the function W i s  evaluated a t  ( m  + o, n )  as 

Substitution of Eqs. (43) and (46) into Eq.(15) gives the following simultaneous 

l inear  algebraic equations involving only W a t  m + 1 .  

Wn-’ + Wn + C n  - Wmtl n+l = O n  - n mtl n m+l 
27 
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I where n = 2 ,  3,  ..., N - 1 .  The coefficients for  E q .  (47)  are  given by the 

fo l l  owing expressions : 

5 

An = (c2 + A, c,)  0 n 
.-. 

Bn = (b2  + A1 b, + A2 ) 0 + A4 / A C  
n n n 

- 
C n = ( a 2 + A  a ) o  

and 

1n 1 

and A where A1 , A*,, Agn are the coefficients of E q .  (15) evaluated a t  the 
4n  n 

nth g r i d  point and are  given by Eqs. ( 1 6 ) ,  (17)  and (18) for  the s-momentum, 

energy and species conservation equations. 

Assuming tha t  

i s  valid through the shock layer (see RichtmyerY3l also Conte3* and Carnahan, 

Luther and Wil kes ) then Wiii i s  given by 33 

Wn 'm+1 - En- l  mtl Fn-1 
n-1 - - .-. 

Substituting E q .  (50) into E q .  ( 47 )  and solving for  Wltl and comparing 

with E q .  (49)  gives the recursion formulas 
.-. 

- - -'n En - -. . - . -  

Bn + An En-l 
28 



and 
.. .... 

- A  F - - 'n n n-1 Fn - - - . . .  
Bn + An En-l 

W i t h  the addition of expressions for n = 1 and n = N, the requirements 
1 n 

for  the algorithm are complete. A t  n = 1 ,  (E],, = 0 or WWl = Ww. That 

E q .  (47) remain valid irrespective of the finite-difference g r i d  spacing in 

the n-direction requires 

- .. 1 F1 = Ww and El = 0, i f  Wn+l - - ww 

or 

n 
f 1  = 0 and El = 1 ,  i f  = o  

For n = N, the value of W i s  

N 
'm+l = 'sh (53) 

The solution of E q .  (15) i s  provided by the following algorithm. Starting 

w i t h  Eqs. (52) ,  the in and in are evaluated ( u s i n g  Eqs. (16),  ( 1 7 ) ,  (18),  (45)  

and (48))  w i t h  n increasing from 2 t o  N - 1 .  Then the Wi+l are evaluated 

from Eq. (49)  w i t h  n decreasing from N - 1 t o  1 .  

Solution for  Y-Momentum and Continuity Equat ions 

The normal momentum equation, E q .  (ZOa), i s  rewritten so that  aF/an may 

be evaluated d i rec t ly  as 
3 3 
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w i t h  o n l y  the  f i r s t  term on the  r i g h t  s ide  o f  t h e  equat ion r e t a i n e d  when the  

t h i n  shock- layer approximat ion i s  made, Eq. (20b). With t h e  y-momentum equat ion 

w r i t t e n  i n  t h i s  form, Eq. (54) o r  (20b), t h e  pressure d e r i v a t i v e  w i t h  respec t  

t o  TI i s  ca lcu la ted .  With a t  t he  shock known, Fsh = 1, i n t e g r a t i o n  by t h e  

t rapezo ida l  r u l e  f rom the  shock inward g ives  t h e  s o l u t i o n  o f  t h e  normal momentum 

I 

equat ion.  

The c o n t i n u i t y  equat ion,  Eq. (19) ,  when i n t e g r a t e d  y i e l d s  both the  normal I 
v e l o c i t y  ( v )  p r o f i l e  and the  shock- layer th ickness,  ysh.  As given p rev ious l y ,  

the  c o n t i n u i t y  equat ion i s  

I 

~ 

where j = 1 f o r  axisymmetric f l o w  and j = 0 f o r  two-dimensional f l ow .  

The mass f l u x  between the  body (q = 0)  and a g iven g r i d  p o i n t  n ( n  = n )  i s  

p ropor t i ona l  t o  mn ( w i t h  mN denot ing n = 1, t h e  shock) which is given by 

- -  
(55) j Ysh (r -t Ysh 'rl cos $1 Psh Us-, P u dn - J n  

mn - 0 

I n t e g r a t i n g  Eq. (19) f rom 0 t o  n and s u b s t i t u t i n g  Eq. (55) g ives t h e  f o l l o w i n g  I 

form f o r  t h e  Con t inu i t y  equat ion.  i 
, 

J 
0 



or equi Val ently as 

The term dmn/dg i s  obtained by evaluating E q .  (55) as s + ds /2  and s - ds /2  

and d i v i d i n g  by ds. 

Eq. (57). 

The normal velocity, v ,  i s  then obtained by rearranging 

The shock-layer thickness i s  obtained by integrating Eqs.  (55) and (56) 

from 0 t o  1 instead of from 0 t o  n. This gives 

and 

The term dmN/dg could also be evaluated from 

(mN)s + ds /2  - (mN)s - d s / 2  3 
Rearranging Eq. (60) gives  

By evaluating mN from Eq. (61), u s i n g  Eq. (59) f o r  dmN/dg, Eq. (58) can be solved 

for the shock-layer thickness, ysh. 

When written as i n  Eq. (19),  the continuity equation is indeterminate a t  

s = 0. 

the following limit expressions as  E, -t 0 a re  used: 

In order t o  evaluate the continuity equation a t  the stagnation point 
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I I 

r i- 6 ,  COS $ i- 6 and Ush i- 5 u;h where Ush = d Ush/d6. Also,  a t  S = 0, ysh = 0. 

With these expressions Eq. 19 becomes 

where Psh vsh = - s i n  ~1 = - 1 a t  s = 0 has been used. 

n and rearranging terms g ives t h e  f o l l o w i n g  expression f o r  t h e  normal v e l o c i t y  

I n t e g r a t i n g  f rom 0 t o  

component. 

I n t e g r a t i n g  Eq. (63) f rom 0 t o  1 g ives the  f o l l o w i n g  equat ion 

which can be solved f o r  t h e  shock- layer th ickness,  ysh '  by rear rang ing  terms. 

An a l t e r n a t e  method f o r  determin ing t h e  shock- layer th ickness,  y,h, i s  t o  

d i r e c t l y  match the  mass f l u x  through t h e  shock w i t h  t h e  mass f l o w  i n  the  shock 

l a y e r  between t h e  body and t h e  shock. 

ponding t o  a g iven p o s i t i o n  on the  body w i t h  rad ius  r, i s  g iven by 

The mass f l u x  through t h e  shock, cor res-  
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The mass f l u x  through the  shock l a y e r  i s  given by 

'0 

Equating the  mass f l u x  through t h e  shock, is, and the  mass f l u x  through the  

shock l aye r ,  m,,, g ives 

which can be rearranged t o  so lve  f o r  t h e  shock- layer th ickness.  

Eq. (68) becomes 

For j = 0 the  

and f o r  j = 1 , Eq. (68) i s  w r i t t e n  as 

When Eq. (68)  i s  r e w r i t t e n  f o r  t he  l i m i t  o f  s = 0, t h e  expressions f o r  ysh are  

equ iva len t  t o  those obta ined from Eq. (62). 
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Curvature for  Nonanalytic Bodies 

In the present work, two classes of nonanalytic b l u n t  bodies were con- 

sidered. 

a t  the sphere-cone tangent point. A continuous dis t r ibut ion of curvature was 

obtained by computing K from the exponential approximation t o  the s tep function. 

The approximate value of K was obtained from 

K = 1 - 11 + exp [-f (s  - Stan)])  

For spherically blunted cones, the surface curvature i s  discontinuous 

(70) -1 

where f i s  a constant w i t h  a typical value of 5. 

other values of f and also w i t h  K given by a true s tep function. These cal-  

culations showed t h a t  the e f fec ts  of changing the value of f were mostly con- 

fined t o  the region s = stan - + 1 and tha t  few ef fec ts  were observed for s > 4 

or 5 or for s < 0.5. 

Calculations were made w i t h  

The geometry for the second class  of nonanalytic blunt bodies was speci- 

f ied i n  tabular form. For these bodies, the curvature was calculated from 

the expression 

or from the equivalent expression 

The derivatives in Eqs. (71) or (72)  were evaluated w i t h  a four p o i n t  walking 

leas t  squares log-log curve f i t .  
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Sol uti  on Procedure 

A t  each s or 6 location the shock-layer equations were solved in the order 

of species, energy, s-momentum, continuity and y-momentum. A t  each location 

the solution was i terated until  convergence was obtained for  the tangential 

velocity, temperature and species concentration prof i les  a t  a l l  points of 

the finite-difference grid. The convergence t e s t  required t h a t  

11 - wn /Wn 5 6 k+l k I  
where n denotes the finite-difference grid point, k denotes the previous i t e r a -  

tion value of W n ,  k + 1 denotes the new i terat ion value of W n ,  W represents 

u ,  

was obtained a t  a specific location, 6 ,  the prof i les  were then used as i n i t i a l  

profiles for obtaining a new solution a t  6 t A C .  

procedure marched downstream. 

- 
or C i  and 6 i s  a small number, typically 0.01. After a converged solution 

In t h i s  way the solution 

If the governing equations were fu l ly  parabolic, only one global i t e r a -  

t ion ( i . e . ,  a solution fo r  the en t i re  length of the body) would be suf f ic ien t .  

However, the equations depend upon d Ysh/d[ (and thus the shock angle). Also, 

the y-momentum equation ( i n  FVSL form) depends upon 87/86 which i s  not  known 

(especially a t  the stagnation point) .  The downstream dependence introduces an 

e l l i p t i c  nature t o  the equations. The e l l i p t i c  e f fec t  in the y-momentum equa- 

t ion i s  resolved by considering TVSL flows f o r  the f i r s t  global i t e ra t ion .  

Subsequent global i t e ra t ions  may then be FVSL using the 7 profiles from the 

previous global i t e ra t ion .  

The e l l i p t i c  effect  due t o  d Ysh/dc i s  resolved by making a sui table  

approximation for  d Ys.,/d6 for the f i r s t  global i t e ra t ion .  Subsequent global 

i t e ra t ions  then use d ysh/dg (or the corresponding shock angle) as calculated 
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from the previous global i t e ra t ion .  In the work of only analytic 

bodies were considered and the assumption was made for the f i r s t  global i t e r a -  

t i o n  t h a t  the shock and body angles were the same, i . e .  t h a t  d ysh/dg = 0. 

Then subsequent global i terat ions used the dis t r ibut ion of d ysh/dg calculated 

from the previous global i t e ra t ion .  

also used i f  the body geometry was nearly analytic as was the case for  the 

t abu1  a r  geometry considered. 

the pressure d i s t r i b u t i o n  i s  highly non-Newtonian and the approximation tha t  

the shock and body angles are equal i s  inappropriate. 

i n i t i a l  shock shape ( a n d  thus an i n i t i a l  dis t r ibut ion of  d ysh/dg) was deter- 

mined from a blunt body, method of character is t ics  procedure such as tha t  of 

Inouye, Rakich and Lomax.’ 

i t e ra t ion  and for  subsequent global i t e ra t ions ,  the shock angle was calculated 

from the body angle and the smoothed dis t r ibut ion of d ySh/dg from the previous 

gl obal i t e r a t i  on. 

In the present work this procedure was 

However , for  the spherical ly  bl unted cones , 

For sphere-cones, an 

This shock shape was used fo r  the f i r s t  global 

1 

36 



RESULTS AND DISCUSSION 

In  the present work, the principal interest  was i n  viscous shock-layer 

flows over nonanalytic b l u n t  bodies such as the space shut t le  orbi ter  and 

sphere-cones , b u t  some predictions were made for flows over hyperboloids. 

Since fo r  analytic bodies such as hyperboloids the present method is almost 

identical t o  that  of Davis ,7y8 predictions of the present method for  hyper- 

boloids should agree almost exactly with the resu l t s  of Davis.8 While the 

resul ts  are n o t  presented, such was indeed the case f o r  the 10" half-angle 

hyperboloid a t  225 Kft (Davis8). For th i s  case the Reynolds number parameter 

was E = 0.197 and the Reynolds number values were Rew/ft = 8355, Rew/Rn = 690 

and Res = 63.7. 

w i t h  Res = 9555 t o  23.7. 

predictions of Davis' fo r  flow over a hyperboloid for  this case indicates the 

accuracy of present technique. 

8 Other cases considered by Davis were from 100 Kft t o  250 Kft 

The agreement o f  the present predictions w i t h  the 

In the present paper, predictions are presented for viscous shock-layer 

flows over four nonanalytic blunt bodies. 

considered was the windward plane of symmetry of a space shut t le  orbi ter  a t  

224 K f t  and a t  a 34" angle of attack. In the second case, the body considered 

was a 20" sphere-cone a t  280 and 310 Kft. This geometry was considered by 

In the f i r s t  case, the geometry 

Kang and Dunn 18-21 as approximating the windward plane of symmetry of a space 

shut t le .  

cone w i t h  R, = 0.5 f t .  a t  25,000 fps a t  230, 250, 265 and 275 Kft. The fourth 

case considered i n  the present paper was the 7.5" sphere-cone ( R n  = 1 in .  a t  

M W = 13.4) investigated by Pappas and Lee17 i n  t he i r  experiments. 

The t h i r d  case considered was the RAM C reentry body, a 9" sphere- 
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NASA Shuttle Geometry Case 

The case considered by Tong, Buckingham and Morse1* was a space shut t le  

orbi ter  geometry u s i n g  the Rockwell Shuttle 2007 t ra jectory a t  a1 t i tudes 

between 300 and 180 Kft. 

boundary-layer theory was used t o  predict the flow over the equivalent axi- 

symmetric body. 

polynomial curve f i t s  which were faired into a cone of half-angle correspond- 

i n g  t o  the angle of at tack. 

followed the approach of Tong, b u t  d i f f i cu l t i e s  were encountered in d i rec t ly  

using the polynomial curve f i t s  for the forward por t ion  of the body. 

the surface curvature a s  calculated from the polynomials was n o t  only discon- 

tinuous b u t  also changed sign. The polynomial curve f i t s  were replaced by a 

table of s ,  r and z values, and a four p o i n t  wa lk ing  leas t  squares log-log 

curve f i t  was used t o  interpolate for  the needed values of r and z i n  t h i s  

table.  This approach gave a continuous dis t r ibut ion of surface curvature. 

body geometry and the corresponding shock predicted by the present method are  

shown i n  Fig. 3 for  an entry t = 800 sec. or an a l t i t ude  o f  224 Kft. 

by the present method were made fo r  t h i s  particular case, since for the space 

shut t le  a t  224 Kft bo th  the f i rs t -order  b0undar.y-layer theory used by Tong and 

the viscous shock-layer theory used i n  the present work should be equally 

appropriate. 

They considered the windward plane of symmetry, and 

In Ref. 12 the body geometry was specified by a ser ies  of 

In the present work the geometry considered 

In  f a c t ,  

The 

Predictions 

The pressure dis t r ibut ion predicted by the present method fo r  t = 800 sec.  

i s  shown in F i g .  4 w i t h  pressure dis t r ibut ions from Ref. 12 which were obtained 

w i t h  the tangent-cone approach. Results from the two methods agreed quite well. 

Mass fraction profiles a t  the stagnation point are  compared i n  F i g .  5. 

Even though there was no attempt made t o  match the reaction r a t e  d a t a  used 
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i n  the present method w i t h  Tong's, the present resul ts  agreed reasonably well 

w i t h  his resu l t s .  The most apparent differences were i n  the N profiles near 

the surface. 

1 

Tong's resu l t s  showed a pronounced r i s e  i n  the N profi le  from 

I the wall and then a gradual decrease with a sharp decrease near the shock. The 

N profi le  predicted by the present method showed a s l i gh t  increase and then a 

decrease similar t o  t h a t  of the N profi le  of Tong. The 0 profiles were qui te  

similar.  The present method predicted a s l igh t ly  more r a p i d  decrease i n  the 

outer portion of the flowfield. 

present method predicted a higher peak value of NO s l igh t ly  far ther  from the 

shock. In considering the difference between the present resul ts  and the resu l t s  

of Tong, i t  should be noted t h a t  n o t  only were the reaction rates  d i f fe ren t ,  b u t  

also the present resul ts  were FVSL and the Tong r e su l t s ,  a t  the stagnation point 

only, were TVSL. 

present predictions and the predictions o f  Tong1' was quite good. 

The NO profiles were also quite similar. The 

Considering these differences , the agreement between the 

While mass fraction prof i le  differences d i d  e x i s t ,  there was l i t t l e  d i f -  
j 

ference i n  the predicted stagnation point heat t ransfer  as shown in the next 

figures. Heat-transfer dis t r ibut ions are  shown i n  F igs .  6 and 7 and the wall 

temperature d i s t r i b u t i o n  is  shown i n  Fig. 7 .  The predictions of the present 

method fo r  the noncatalytic wall (NCW) condition showed a strong dependence on 

the gas model used. 

equilibrium a i r  ( 7  species) was as much as twice that  f o r  dissociating oxygen. 

T h i s  difference decreased downstream. For the equilibrium ca ta ly t ic  wall (ECW) 

condition, there was l i t t l e  difference between the predictions of the present 

method for  nonequilibrium a i r  and dissociating oxygen. 

the NCW conditions the present mu1 t i  -component gas resu l t s  agreed we1 1 w i t h  

the results of Tong, b u t  the present method d i d  not predict the r f se  i n  heat 

i 
~ 

1 Over the front  of the body, the heat transfer for  non- 

I 

For both the ECW and 
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t ransfer  a t  s = 1 f t .  t h a t  Tong predicted when entropy-layer swallowing was 

included. 

used were fo r  a different  body and tha t  entropy-layer swallowing effects  are 

strongly dependent upon the shock shape. In the present method an i n i t i a l  

shock shape was assumed and then updated a f t e r  each global i t e ra t ion .  For 

this geometry the shock shapes from the second and t h i r d  global i terat ions 

were essentially ident ical .  

approach over the boundary-layer approach is  evident from these resu l t s .  For 

the viscous shock-layer approach, the shock shape i s  a t  l eas t  par t ia l ly  se l f -  

correcting w i t h  global i t e ra t ion  and problems such as displacement-thickness 

interaction and shock-generated external vor t ic i ty  (entropy-layer swallowing 

and boundary-layer edge conditions) do not occur. 

I t  should be noted tha t  i n  the resul ts  of  Tong the shock shape data 

A major advantage of the viscous shock-layer 

20" Sphere-Cone Case 

Kang and Dunn 18-*' considered a 20" sphere-cone with Rn = 4 f t .  since t h i s  

geometry reasonably approximated the windward plane of symmetry configuration 

of a space shut t le .  

280 and 310 Kft. 

are  shown in Fig. 8 with the resu l t s  of Kang and Dunn.  

showed a significant e f fec t  of a1 t i  tude on the predicted heat-transfer distri-  

b u t i o n ,  b u t  the effect  was about half of tha t  obtained by Kang and Dunn.  

normalized heat-transfer dis t r ibut ions shown i n  F i g .  9 emphasize the differences 

between the present resul ts  and the resu l t s  of Kang and Dunn.  The normalized 

heat-transfer dis t r ibut ions showed l i t t l e  a l t i t ude  e f fec t  for  the present resu l t s  

b u t  s ignificant effects  for  the resu l t s  of Kang and Dunn .  Also, the shape of 

the distributions were quite d i f fe ren t .  

Flowfield predictions were presented for  two a l t i t udes ,  

Stanton number dis t r ibut ions predicted by the present method 

The present resu l t s  

The 

The present resu l t s  showed a sharp 
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decrease i n  q/qo over the spherical cap and a pronounced change i n  slope near 

the sphere-cone tangent point.  The resul ts  of Kang and Dunn showed a more 

gradual decrease and a gradual change in slope. 

Temperature profiles are  shown i n  Figs. 10 and 11. The resu l t s  of Kang 

and Dunn showed much less  a l t i t ude  dependence than d i d  the present resul ts .  

The present resu l t s  correctly showed a thicker viscous layer a t  the higher 

a l t i t ude  (most noticeable a t  s = 90) while the method of Kang and Dunn predict- 

ed almost exactly the same temperature profiles for  the two a l t i tudes,  especially 

a t  s = 90. 

a t h i n  boundary layer while the resul ts  of Kang and Dunn d i d  not. 

Moreover, the present resul ts  produced the downstream "recovery" of 

Predictions of the present method were also made fo r  dissociating oxygen 

(0-02) flow over the 20" sphere-cone. The present predictions for  7 species 

air  agreed well w i t h  the present predictions for  dissociating oxygen for  heat- 

t ransfer  dis t r ibut ions and temperature profiles.  

Predictions were also made (using reaction ra te  constants matched t o  those 

of Kang and Dunn 18-*' (see Table VI) for electron concentration prof i les .  The 

present predictions of the electron concentration profiles are  shown i n  Figs. 

12  and 13 w i t h  the profiles predicted by Kang and Dunn.  

t ions o f  Ne were much lower than the predictions of Kang and Dunn. Also, the 

present method predicted a monotonic decrease of Ne w i t h  increasing s ;  whereas, 

the method of Kang and Dunn predicted a minimum Ne a t  s = 10 or  30 w i t h  Ne a t  

s = 90 higher than a t  s = 10, 30 and 50. Perhaps more s ignif icant ly ,  the 

present method predicted the peak electron density in the viscous layer near 

the body; whereas, the method of Kang and Dunn predicted nearly the same pro- 

f i l e s  a t  310 Kft and 280 K f t  while the present method predicted much f u l l e r  

electron density profiles (especially downstream) a t  310 Kft than a t  280 Kft. 
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The al t i tude effect  predicted by the present method for both temperature and 

electron density profiles seems en t i re ly  reasonable and correct.  

RAM C Reentry Case 

The RAM C f l i gh t s  were p a r t  of a program conducted by the NASA Langley 

Research Center for  studying flow-field electron concentrations under reentry 

conditions. The body fo r  each RAM C f l i gh t  was a 9" sphere-cone w i t h  a 6 i n .  

nose radius. Associated w i t h  the experimental program were theoretical studies 

u s i n g  numerical methods. For example, Kang and Dunn 18-21 used a TVSL integral 

method procedure t o  predict electron concentration profiles for  several points 

on the RAM C t rajectory.  Also included i n  the Refs. 18-21 were other flow-field 

quantit ies such as temperature profiles and surface heat-transfer distributions. 

The results presented by Kang and Dunn were fo r  the higher a l t i t ude  points 

on the RAM C t rajectory where viscous shock-layer theory would be more appro- 

pr ia te .  Predictions of the RAM C electron concentrations have also been made 

by other researchers. For example, Evans, Schexnayder and Huber 22,34 applied 

two different boundary-layer methods and obtained reasonable agreement w i t h  the 

experimental data w i t h  b o t h  methods. The use of the boundary-layer approach 

limited Evans e t  a l .  t o  consideration of the lower a l t i t ude  points of the RAM C 

trajectory.  

Kang and Dunn. 

f inite-difference,  viscous shock-layer method were compared w i t h  the predic- 

tions of a f inite-difference,  boundary-layer method (Evans, Schexnayder and 

Huber ) and the predictions of the TVSL integral method of Kang and Dunn.  

In  the present work the principal emphasis was not on predicting electron con- 

centrations b u t  rather was on predicting the hypersonic, viscous flowfield 

over nonanalytic blunt bodies w i t h  electron concentrations a part  of the 

However, the 230 Kft point was considered by Evans e t  a l .  and by 

For the 230,000 f t .  a l t i t ude  p o i n t ,  predictions of the present 

22 18-21 
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flowfield predictions. The present resul ts  for  the RAM C a t  230 Kft included 

viscous shock-layer predictions for  three gas models (perfect gas , dissociating 
1 

data and other numerical resu l t s  for  distributions of S t a n t o n  number, temperature 

behind the shock and shock-layer thickness in addition t o  temperature and 

electron concentration prof i les .  The experimental data and the numerical re- 

sul ts of Evans, Schexnayder and Huber22 were fo r  electron concentration profiles 

only. The differences between the present predictions and the numerical resu l t s  

of Kang and Dunn 18-21 were unexpectedly large. Most of the discussion of the 

differences between the present resul ts  and the resu l t s  of Kang and Dunn will 

be deferred t o  the end of this section. 

Distributions of temperature behind the shock are  shown i n  Fig. 14 for  

Although the end of the RAM C sphere-cone and a 9" half-angle hyperboloid. 

RAM C body was a t  s = 9.2 the resul ts  g iven  by Kang and Dunn went t o  s = 90 and 

the present predictions were extended t o  s = 100. 

were small differences i n  Tsh due t o  differences i n  the gas model b u t  the sphere- 

cone and hyperboloid gave the same value for the same gas model. The differences 

A t  the stagnation point there 

i n  Tsh due t o  differences i n  gas model for the present resu l t s  

a t  the stagnation p o i n t  and decreased as the shock became more 

the downstream portion of the flow, the principal differences 
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t o  the differences i n  the bodies. 

differences in Tsh distributions for  hyperboloids and sphere-cones and correctly 

predicted the  dis t r ibut ions of Tsh coming together a t  s 

the present resu l t s ,  Kang and Dunn obtained a quite different  dis t r ibut ion 

The present resul ts  showed the expected 

80. In contrast t o  

Of is.,. 

Distributions of shock-layer thickness are compared i n  Fig. 15. While the 

present results show some d i s t inc t  differences,  they were in substantial agree- 

ment, especially for  s > 20. 

were again due t o  the differences in the bodies considered. 

layer predictions showed only small differences in ysh due t o  the chemistry. 

For the sphere-cone, the viscous shock-layer resu l t s  were in reasonable agree- 

ment w i t h  the inviscid resul ts  b u t  d i d  n o t  show as sharp a decrease in ysh 

between s = 15 and 40. 

the sphere-cone resul ts  for  s < 20 b u t  were abou t  50% greater for  s > 50. 

The principal differences in the present resu l t s  

The present shock- 

The present resu l t s  for  the hyperboloid were lower t h a n  

Temperature profiles are shown in Figs. 16 and 1 7 .  The profiles in Fig. 

16 were for  the probe location. 

the probe location. The prof i le  of Kang and Dunn ( for  s = 10) was the prof i le  

closest  t o  the probe location which they gave ( the next closest  profiles were 

for  s = 3.0 and 20.0) .  

fo r  the hyperboloid showed a smoother t ransi t ion from the outer flow t o  an 

inner, viscous flow t h a n  did the present sphere-cone prof i les .  The prof i les  

for dissociating oxygen showed a ten percent lower peak temperature t h a n  did 

the profiles for  ionizing a i r .  

present profiles showed a very d i s t inc t  inner viscous region (y/ysh = 0.0 t o  

0.5) and an outer inviscid region (y/ysh = 0.5 t o  1 .o). 

velocity profiles also indicated the edge of the viscous layer a t  y/y 

The present method prof i le  was for  s = 8.8, 

The profiles i n  F i g .  1 7  were for  s = 90. The prof i les  

Despite these small differences,  the four 

While n o t  shown, the 

0.5. sh 
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The present viscous shock-1 ayer temperature prof i 1 es have a1 so been compared 

(not  shown here) w i t h  the temperature profiles predicted by the seven species 

boundary- 1 ayer met hod 15'16 fo r  flow over the 9" sphere-cone. The boundary-layer 

and viscous shock-layer profiles showed differences i n  peak and edge temperatures 

b u t  were quite similar i n  character and t h e  boundary-layer profiles a lso indicated 

the edge of the viscous layer a t  y 2 1.0 as d i d  the viscous shock-layer prof i les .  

Further, a comparison of the present profiles,  as  shown in Figs .  16 and 17, 

clearly showed the d i s t inc t  downstream development of an outer inviscid flow 

and an inner viscous flow. 

b 

Electron concentration profiles for  the RAM C a t  230 Kft are  shown in 

Figs .  18 and 19. The data tha t  the present resul ts  are compared w i t h  were taken 

from figures i n  Ref. 22. 

experimental data and the resul ts  Evans, Schexnayder and Huber2* obtained w i t h  

a very re l iab le  finite-difference,  boundary-layer method ( i  .e .  Blottner 

The reaction ra te  constants used for the present resul ts  i n  F i g .  18 were matched 

t o  those of Ref. 22 (Table V ) .  The present resu l t s  agreed reasonably well with 

the experimental data and w i t h  the boundary-layer theory resul ts  of Ref. 22 

as t o  level o f  i o n i z a t i o n  and quite well with the boundary-layer theory resul ts  

as t o  character of the Ne prof i le .  The present viscous shock-layer theory 

predicted a higher temperature i n  the viscous layer t h a n  did the boundary-layer 

theory of Ref. 22, and this difference accounted for most of the difference i n  

the Ne prof i les .  

In  Fig. 18, the present resu l t s  are compared w i t h  the 

30 
).  

Predictions of electron concentrations were a1 so influenced by the reaction 

Predictions were made fo r  the RAM C case using reaction ra te  ra tes  used. 

constants matched t o  those of Kang and Dun"" (Table VI). The profiles pre- 

dicted us ing  the two different  se t s  of r a t e  constants are  compared i n  F i g .  19 .  
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The principal difference was a one-third reduction in peak Ne u s i n g  Ref. 19 

ra te  constants. 

were taken from Ref. 22.  Except for  the experimental data between y = 10 

and 14  cm, which were affected by probe heating,22 the use of the Ref. 19 

reaction rate constants improved the agreement between the predictions of the 

present method and the experimental data,  a t  l eas t  for  y < 10 cm. However, as 

noted by Evans, Schexnayder and Huber,22 the experimental data d i d  not support 

the upswing i n  N e  near the shock t h a t  the Kang and Dunn" resul ts  gave. The 

present results also did n o t  show such an upswing, b u t  rather showed the 

opposite trend. 

19 The experimental data and the TVSL resu l t s  of Kang and Dunn 

Heat-transfer distributions are shown i n  F i g .  20. The present resu l t s  

i ncl ude boundary-1 ayer (perfect gas 13'14 and seven species nonequilibrium 

a i r  15'16) and viscous shock-layer (perfect gas, dissociating oxygen, and seven 

species nonequilibrium a i r )  predictions for  the RAM C 9" sphere-cone and seven 

specie TVSL predictions for  a 9" half-angle hyperboloid. All of the present 

resul ts  were i n  good agreement for th i s  case. 

and geometry did ex i s t ,  b u t  the agreement was good despite the divers i ty  of 

methods, chemistry and geometry. 

Some differences due t o  chemistry 

The heat-transfer ra tes  a t  the s t a g n a t i o n  p o i n t  are not c lear ly  shown i n  

F i g .  20 b u t  are  given in Table IX. 

1 s t  i teration were obtained us ing  the method of Ref. 16.  The present resu l t s  

showed some d i s t inc t  differences b u t  agreed reasonably well , a t  l ea s t  compared 

with the results of Kang. 

The present resu l t s  for  TVSL, seven species, 

In Refs. 18-21, Kang and Dunn presented temperature prof i les ,  heat t ransfer  

ra tes ,  shock temperature and shock-layer thickness dis t r ibut ions fo r  the RAM C 

reentry body only a t  230 K f t  However , predictions of electron concentration 
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profiles fo r  s = 8.8 were given for 250, 265 and 275 Kft as well as for  230 Kft. 

In Ref. 21 , Kang and Dunn noted t h a t  a t  230 Kft the electron concentration 

profiles predicted with a single ionizing species (seven total  species) and 

1 

b u t  that  a t  275 Kft the f ive  ionizing species chemistry model predicted electron 

concentrations an order of magnitude higher  than the single ionizing species 

(NO') model. 

7 and 11 species,  b u t  a t  250 and 265 Kft they presented Ne profiles predicted 

with the 11 species model only. 

In Figs. 21 and 22, electron concentration profiles predicted by the 

For these two a l t i tudes  they gave Ne prof i les  predicted w i t h  both 

present method are compared with the experimental data (from Ref. 22) and the 

resu l t s  of Kang and Dunn 18-". The present resul ts  are  for  a single ionizing 

species (7  species t o t a l ) .  

s l i p  (NSS) and the resu l t s  of Kang and Dunn are  for 7 species. 

the present resul ts  are  for  shock s l i p  (SS) and the resu l t s  of Kang and Dunn 

In F i g .  21 t h e  present resul ts  are  for  no shock 

In F i g .  22,  

are for  11 species. 

Comparing the present predictions without shock s l i p  w i t h  Kang and D u n n ' s  

predictions w i t h  shock s l ip ,  Fig. 2 1 ,  the present predictions agreed reasonably 
L 

18-21 well as t o  level of ionization w i t h  the predictions of Kang and Dunn 

w i t h  the NO' only model. The agreement between the present predictions and 

the experimental d a t a  was reasonably good a t  230, 250 and 265 Kft, b u t  a t  

275 Kft the present method, without shock s l i p ,  s ignif icant ly  underpredicted 

Ne. In contrast ,  the present predictions of electron concentration profiles , 
when shock s l i p  was included, as shown i n  F i g .  22,  agreed quite well w i t h  the 

experimental data,  even a t  275 Kft. Without  shock s l ip ,  the species concen- 

trations behind the shock were the same as i n  the f ree  stream and thus 
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CNO+ - - c,_ = 0.  With shock s l ip ,  however, a f i n i t e  concentration of NO+ and 

thus e- was permitted behind the shock and diffusion carried the ions t o  the 

shock zone. 

s l i p ,  the nonzero value of CNo+ behind the shock raised the electron density 

prof i le ,  especially a t  the higher a l t i tudes .  

a thicker viscous shock layer was predicted, as was an increased s t a t i c  tempera- 

ture  and a decreased density distribution from the maximum values i n  the layer 

While the electron density a t  the shock was quite low with shock 

Also a t  275 Kft, w i t h  shock s l ip  

t o  the shock. 

the higher temperature and decreased deionization due t o  the lower density. 

T h u s  the present method predicted an increased ionization due t o  

Further, the present predictions showed correctly two trends not  shown by 

the predictions of Kang and Dunn: 18-" 

w i t h  a l t i tude ,  and 

( i )  the viscous-layer thickness increased 

( i i )  the present predictions showed t h a t  the peak of the 

electron concentration prof i le  occurred within the viscous layer and n o t  a t  the 

shock. 

Ne prof i le  occurring a t  the shock was t h a t  the temperature immediately behind 

the shock was quite low, w i t h  an accompanying high density. 

In Ref. 21 , the explanation given by Kang and Dunn for the peak of the 

T h u s ,  i t  was 

reasonable f o r  the peak electron concentration t o  occur a t  the shock s ince,  

w i t h  shock s l i p ,  there was a f i n i t e  electron concentration a t  the shock. 

this were modified to  s t a t e  that  the peak occurred near tne shock, this would 

If 

appear t o  be reasonable. 

predictions a t  265 and 275 Kft. 

the electron concentration profiles would show a peak a t  the shock, or such a 

strong upswing toward the shock as predicted by Kang and D u n n .  

In f a c t ,  such resu l t s  were indicated by the present 

However, i t  does n o t  appear reasonable tha t  

18-21 

In  the preceding discussion, the differences between the present resu l t s  

and the results of  Kang and Dunn 18-21 were only br ief ly  mentioned. In Refs. 

18-21, a large number of resul ts  were presented b u t  comparisons were made w i t h  
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no other numerical resu l t s ,  and the only experimental resul'ts with which 

comparisons were made were for  electron concentration prof i les .  

above, t he i r  resu l t s  apparently agreed well w i t h  the Ne profiles b u t  as Evans, 

Schexnayder and Huber22 noted the experimental d a t a  d i d  no t  support the upswing 

i n  the Ne prof i le  near the shock as obtained by Kang and Dunn.  

observed i n  Ref. 22 that  the method of Kang and Dunn overpredicted the Ne 

values measured by the microwave reflectometers on the RAM C-I1 a t  the more 

forward body s ta t ions (s 2 0.8 and 2 . 1 )  by factors as large as 20; whereas for  

233 K f t  and lower, the resul ts  of the boundary-layer theory used in Ref. 22 

agreed w i t h  the  reflectometer data a t  a l l  body stations. These two notes from 

Ref. 22 ra i se  questions about  the resul ts  given in Refs. 18-21. Further 

questions must be raised by the differences between the resu l t s  from Refs. 18-21 

and the present resu l t s .  

As mentioned 

I t  was also 

As mentioned above the emphasis of t h e  present work was on predicting the 

hypersonic viscous flowfield over nonanalytic blunt bodies including spherically 

blunted cones w i t h  electron concentration profiles only a p a r t  of the flowfield 

predictions. 

reaction ra te  constants as well as changes in temperature prof i les ,  mean flow- 

f i e ld  quantit ies such as heat-transfer distributions would be a more re l iab le  

measure of method accuracy. 
29 were also made w i t h  the reaction equations and ra te  constants from Blottner 

(Table VII ) .  Predictions of heat-transfer ra tes  were only s l igh t ly  affected,  

b u t  the predictions of the electron concentrations were an order of magnitude 

lower than when other ra te  d a t a  (Tables V ,  VI and VIII) were used. 

were no experimental data for  ySh or S t  distributions,  calculations were made 

using well known, well established, independent methods (inviscid flowfield 

Since electron concentration profiles are subject t o  changes i n  

For example, predictions for the RAM C a t  230 Kft 

Since there 
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technique of Ref. 1 and boundary-layer flows from Refs. 13-16). The predic- 

tions of the present viscous shock-layer methods agreed well with the resu l t s  

of these independent methods. 

between the  present predictions and the resu l t s  of Kang and Dunn.  

In contrast ,  there were large differences 
18-21 

The value of Tsh a t  s = 0 obtained by Kang and Dunn as shown i n  Fig. 14  

was nearly the same as for  the present r e su l t s ,  b u t  for s > 1 the i r  values of 

Tsh were dis t inct ly  lower than the present Tsh values. For s > 80 the i r  

value o f  Tsh was only about  60% of the present values. T h e  distributions of 

Tsh obtained by Kang and Dunn shou ld  imply a lower shock angle ( for  s > 5 or 

10) than that in the present resu l t s .  

tr ibutions shown i n  F i g .  15 seem t o  clear ly  indicate t h a t  ( for  s > 10)  the 

shock angle obtained by Kang and Dunn was considerably greater than t h a t  i n  

the present resu l t s .  

unity, b u t  a t  s = 90 the present resu l t s  gave ysh = 1.9  for  the inviscid flow 

over the sphere-cone, ysh L- 2.2 for  the sphere-cone shock-layer flows and 

ysh 2 3.5 for the hyperboloid shock-layer flows; whereas Kang and Dunn's resu l t s  

gave ysh 2 9. T h u s ,  the trends of  the Tsh and ysh dis t r ibut ions from Refs. 

18-21 were d i  sti nctly contradictory and inconsistent . 
The temperature profiles as  shown i n  Figs. 16 and 17 also differed markedly. 

However, the shock-layer thickness dis-  

In f ac t ,  a t  s = 10 the values of ysh were a l l  approximately 

The profiles of Kang and Dunn were nearly the same shape a t  s = 10 as a t  s = 90, 

while the present profiles showed a strong downstream influence. The present 

profiles showed a d i s t inc t  outer inviscid region, somewhat weak a t  s = 8.8 b u t  

quite clear a t  s = 90. The present prof i les  showed about the same peak value 

of T a t  s = 8.8 and 90. In the prof i les  from Refs. 18-21, the peak value 

increased from T 2 7200" K a t  s = 10 t o  T 2 8200" K a t  s = go. 
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W i t h  the temperature profiles as different as shown i n  F i g .  1 6 ,  differences 

i n  electron concentration profiles were expected, b u t  n o t  the differences shown 

by the prcjfiles i n  Fig. 19. The present results gave a peak value of Ne a t  

y 2 5 cm while the peak of the temperature prof i le  was a t  y = 3.5 cm, b u t  T a t  

y = 5 cm was only s l igh t ly  lower than T a t y  = 3.5 cm. This was quite reasonable, 

b u t  i n  the resul ts  of Kang and Dunn ,  the peak value of Ne was a t  the shock 

(y 2 17 cm) while the peak value of T was a t  y = 9 cm. Further, T a t  the shock, 

where the peak i n  Ne occurred, was less  t h a n  one-eighth of the peak temperature. 

Also, while the Ne profi le  of Kang and Dunn apparently agreed well w i t h  the 

experimental data,  the peak value o f  Ne was two or three times the peak of the 

experimental data (points affected by probe heating excluded), twice the peak 

of the present resu l t s  and three times the peak obtained by Evans, Schexnayder 

and Huber. 22 

A t  the stagnation p o i n t ,  the heat transfer obtained by Kang and Dunn was 

one-half t o  one-third of tha t  predicted by the finite-difference methods used 

i n  the present work (see Table IX). 

over most of the conical portion of the body the heat t ransfer  predicted by Kang 

and Dunn was two t o  six times tha t  predicted by the boundary-layer and viscous 

shock-layer methods used i n  the present work. 

shown i n  Figs .  16 and 1 7  would apparently indicate t h a t  the heat t ransfer  

obtained by Kang and Dunn should have been lower than the present resul ts .  

I h  contrast t o  the stagnation point resu l t s ,  

However, the temperature prof i les  

Ames Experimental Case 

A measure of the val idi ty  of  a theory is  the agreement w i t h  experimental 

data. 

i n  the future and, i n  general, wind-tunnel data for  shut t le  configurations 

a re  not  readily available outside of the NASA and some contractors. One s e t  

For the shuttle configuration, f l i g h t  heat-transfer data are some years 
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of experimental hypersonic wind  tunnel d a t a  which has been published is  t h a t  o f  

Pappas and Lee17 a t  the NASA Ames Research Center for  flow over a 7.5" sphere- 

cone w i t h  R n  = 1 i n .  

t ransfer  distributions were measured a t  Mach 13 w i t h  varying rates  of injection 

of foreign gases. Included in the experimental data were dis t r ibut ions for  the 

no injection case. Experimental and present predictions of pressure and heat- 

t ransfer  distributions are shown i n  F i g .  23 and 24 .  

is the previous f i rs t -order  boundary-layer theory of Lewis, Adam and Gilley 

including transverse curvature and displacement-thickness interaction for the 

Ames conditions. The resul ts  from Ref. 15 were obtained using a global i t e r a -  

t ion for  determining the displacement-thickness interaction e f fec ts  , and the 

inviscid body pressure for  the effect ive body was obtained using a blunt body, 

method of character is t ics  procedure similar t o  t h a t  of Ref. 1 .  

theory d i d  not compare as well w i t h  the experimental data as did the previous 

boundary-layer w i t h  viscous interaction included. 

shock-layer method, the effect  of the discontinuity in surface curvature, K ,  

was most d is t inc t  immediately upstream of the sphere-cone tangent point and 

for  a short distance downstream. 

Lee17 ended a t  s = 5 ,  and almost a l l  of t h i s  body was within the length affect-  

ed by the discontinuity i n  K. 

the agreement between the experimental data and the predictions of the present 

viscous shock-layer theory was quite good. 

In the experimental program, surface pressure and heat- 

Also shown i n  these figures 
15 

The present 

In the present viscous 

The sphere-cone considered by Pappas and 

Despite the e f fec t  of the discontinuity in K,  

While the RAM C ,  230 K f t ,  conditions were qui te  different  from the Ames 

conditions, the Reynolds numbers were of the same order (Re / R n  = 4315 for the 

RAM C conditions and Rem/Rn = 1515 for the Ames conditions). 

numbers were also similar (RAM C y  Re = 269; Ames, Res = 193) and the values 
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of the Reynolds number parameter were nearly the same (RAM C ,  E = 0.0965; 

Ames, E = 0.0980). The Reynolds number similari ty between the two cases 

should allow comparison of the normalized heat-transfer dis t r ibut ions.  Fig. 

25 shows the same d a t a  as Fig.  24 b u t  w i t h  the present results for  the RAM C 

conditions added. The present predictions f o r  the RAM C and Ames conditions ~ 

were i n  quite good agreement even though there was a difference i n  cone angle 

(and thus i n  the location of the sphere-cone tangent p o i n t s ) .  

present viscous shock-layer resul ts  for  the  RAM C conditions agreed well w i t h  

the Ames experimental data. The  resu l t s  of Kang and Dunn 18-21 for  the RAM C 

are also shown i n  F i g .  25 i n  normalized form. 

s > 3 the resul ts  of Kang and Dunn were higher by an order of magnitude or more 

t h a n  the present resul ts .  A comparison of the resul ts  of Kang and Dunn for the 

RAM C w i t h  the Ames experimental data showed a difference by a factor of 11 or 

12 a t  s = 4 or 4.5. The values of Re /Rn and Re, given above indicate t h a t  

the Ames conditions were a t  l eas t  as much i n  a viscous shock-layer regime as 

the RAM C ,  230 Kft, conditions and i t  i s  most surprising t h a t  the trend of the 

results of Kang and Dunn 18-21 d i d  not agree bet ter  with the experimental data 

of Pappas and Lee. 

Further, the 

F ig .  25 clearly shows tha t  fo r  

W 

17 

Computi ng Time Required 

Some of the computing times required for  the RAM C conditions are  given 

i n  Table X. 

the Computing Center of the Virginia Polytechnic Ins t i tu te  and State University. 

The inviscid gas model calculation used the blunt body, method of character is t ics  

technique of Ref. 1.  The PG boundary-layer ( B L )  calculation was made w i t h  the 

method of Refs. 13, 14. The viscous shock-layer (VSL) computing times were 

for  the present method. The inviscid method generated the pressure dis t r ibut ion 

These computing times were obtained on the IBM 370/158 system of 
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for the BL calculation and the i n i t i a l  shock shape for  the VSL calculations. 

In the VSL method, the f i r s t  global i t e ra t ion  was for  0-O2 and subsequent 

global iterations were for  e i ther  0-O2 or the 7 sp gas model. 

The computing time ( n o t  shown) for  a PG VSL was nearly the same as  fo r  

the PG BL. As shown, a global i t e ra t ion  for the 0-O2 VSL required about twice 

the computing time of the PG B L .  

was TVSL, the computing time was almost the same as for  the f i r s t  global i t e r a -  

t i o n .  However, when the second i te ra t ion  was FVSL, the second i te ra t ion  

required three times t h e  computing time o f  the f i r s t  i t e ra t ion  when the same 

value of N was used, and twice the computing time when the step s i ze  res t r ic t ion  

was relaxed. 

For 0-02, when the second global i t e ra t ion  

For the 7 sp gas model, the s tep s i ze  res t r ic t ion  was relaxed. The TVSL 

global i terat ion required six times the computing time required for  0-02, and 

for the FVSL global i t e r a t ion ,  the computing time was 3.5 t o  5 times tha t  

required for the 0-O2 global i t e ra t ion .  

These computing times show tha t  i f  the differences between the resu l t s  

fo r  TVSL and FVSL are not great ,  a s ignif icant  amount of computing time can 

be saved by using the TVSL model. 

the computing time can be greatly reduced by using the 0-O2 gas model. 

Further, unless the 7 sp model i s  required , 
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CONCLUSIONS 

The r e s u l t s  o f  t he  present f i n i t e - d i f f e r e n c e  method f o r  p r e d i c t i n g  hyper- 

sonic  v iscous shock- layer f lows over nonanaly t ic  b l u n t  bodies were compared 

w i t h  p red ic t i ons  o f  o the r  f i n i  te-d i f ference methods and w i t h  experimental data.  

For the  windward plane o f  symmetry o f  a s h u t t l e  o r b i t e r  con f igu ra t i on ,  t he  

p red ic t i ons  o f  t he  present  method agreed we1 1 w i t h  t h e  boundary-layer p red ic -  

t i o n s  o f  Tong, Buckingham and Morse. 

a 20" sphere-cone, a pseudo-shutt le con f igu ra t i on ,  the  p r e d i c t i o n s  o f  t he  

present  method appeared q u i t e  reasonable. Also,  t h e  a l t i t u d e  e f f e c t s  on the  

temperature and e l e c t r o n  concent ra t ion  p r o f i l e s  were c o r r e c t l y  p red ic ted  by 

the  present  method as was the  "recovery" o f  a t h i n  boundary l a y e r  on the  down- 

stream p o r t i o n  o f  the  sphere-cone. 

For the low Reynolds number f lows over 

The agreement o f  t he  p r e d i c t i o n  of the present  method w i t h  exper imental  

For data f u r t h e r  tends t o  v e r i f y  the appropriateness o f  t he  present  method. 

the  RAM C, t he  p r e d i c t i o n s  of the  present  method agreed we l l  w i t h  the  exper i -  

mental e l e c t r o n  concent ra t ion  p r o f i l e s ,  w i th  the  boundary-layer p r e d i c t i o n s  

o f  Evans, Schexnayder and Huber and w i th  other  boundary-1 ayer p red i  c t i  ons of 

hea t - t rans fe r  r a t e  d i s t r i b u t i o n s  ( f o r  p e r f e c t  gas and nonequ i l i  br ium a i r ) .  

P red ic t i ons  o f  t he  present  method a l so  agreed we l l  w i t h  the  exper imental  data 

o f  Pappas and Lee f o r  pressure and heat - t rans fer  r a t e  d i s t r i b u t i o n s .  

The present  v iscous shock- layer method, accurate t o  second order  i n  the  

Reynolds number parameter E, e l im ina tes  most o f  the  problems encountered i n  

app ly ing  boundary-1 ayer  theory  t o  hypersonic , 1 ow Reynolds number f l  ows over 

nonana ly t i c  b l u n t  bodies. 

method w i t h  the  r e s u l t s  o f  Kang and Dunn i n d i c a t e  t h a t  the present  method 

i s  c l e a r l y  super io r  t o  the  more approximate method o f  Kang and Dunn. 

The comparisons o f  p r e d i c t i o n s  o f  the  present  
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TABLE 111. Species Heats o f  Formation 
and Molecular Weights 

Species A hy (ft2/sec2) H* ( Kcal /mol e) M i  

0 1.661 x lo8 58.9725 16.000 

0 0 O2 
NO 3.225 x lo7 21.477 

32.000 

30.008 

N 3.619 x lo8 1 1  2.507 14.008 

NO' 3.5341 235.836 30.008 

N, 0 0 28.016 
L 

10.388 x lo8 H* 
23.053 Mi  A h i  = 
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TABLE IV. Species Viscosity Curve Fit Constants 

Tk, degrees Kelvin 

*i Bi Spec i es ‘i 
~ ~~~~ ~~~~~ 

0 0.01 9558 0.438511 -11.6235 

0.038271 0.021 076 - 9.5989 

NO 0.042501 -0.01 8874 - 9.6197 
N 0.0085863 0.6463 -1 2.581 

NO’ 0.042501 -0.01 8874 - 9.6197 
0.048349 -0.022485 - 9.9827 

O2 

N2 

65 



TABLE V .  Reaction Equations and Reaction 
Rate Constants from Evans, Schexnayder 

and Huber (Ref .  22) 
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TABLE VI. Reaction Equations and Reaction Rate 
Constants from Kang and Dunn (Ref. 21) 

r = l  
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TABLE V I I .  Reaction Equations and Reaction 
Rate Constants from B l o t t n e r  (Ref. 29) 

+ f 20 + o2 

2 0 2 + 0  : 20 t o  
O2 + 02 r = l  

3 O2 + M1 20 + MI 
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TABLE VIII. Reaction Equations and Reaction 
Rate Constants f rom B l o t t n e r  (Ref. 30) 

20 + M1 02 + M1 r = l  

2 N2 t M2 2 2N t M2 
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7 N + o  2 NO+ + e- 
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TABLE I X .  Stagnation Heat Transfer  f o r  

9 O  Sphere-Cone, Rn = 6 in., RAM C Condit ions, 230 K f t  

Model Gas I t e r  Wall Shock 4, BTU/ft2-sec 

BL 

BL 

FVSL 

FVSL 

TVSL 

TVSL 

TVSL 

TVSL 

PG 

7 S P  

PG 

0-o2 

0-o2 

7 S P  

7 S P  

1 1  sp 

Present Results 

--- --- 

ECW --- 
I --- 3 

3 ECW 

2 ECW 

2 ECW 

1 ECW 

Kang Results 

ECW --- 

--- 

ss 
ss 
NSS 

NSS 

ss 

ss 

231.074 

177.250 

123.973 

238.742 

190.278 

156.883 

252.539 

87.772 



Table X .  Computing Times fo r  RAM C 

Sphere-Cone t o  s/Rn = 120a 
I 

G1 obal Computing 

Numberb Model Model Stations Iteractions' Nd Min:sec 
I terat ion Gas Viscous No. of No. of Timee 

- PG Inviscid -- --- - 5:35 

- PG BL 61 189 3 1:34 

1 s t  0-02 TVSL 52 271 3 3:29 

2nd 0-02 TVSL 58 291 3 3:34 

, 2nd 0-02 FVSL 100 71 5 3 1o:oo 

2nd 0-02 FVSL 62 474 4 6:58 

2nd 7 sp TVSL 42 241 4 20:40 

~ 2nd 7 SP FVSL 57 41 5 4 35:45 

%onvergence test of 1% for  velocity,  temperature and species profiles a t  each 

bData a re  for the indicated global i t e ra t ion  only. 

CTotal number of s ta t ion  i te ra t ions  f o r  the global i t e ra t ion .  

dThe s step s i ze  was doubled if  a converged solution was obtained w i t h  the 

eExecution time; IBM 370/158. 

g r i d  point. 

number o f  s ta t ion  i te ra t ions  5 N. 
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