67 research outputs found

    Marine stratocumulus cloud characteristics from multichannel satellite measurements

    Get PDF
    Understanding the effects of aerosols on the microphysical characteristics of marine stratocumulus clouds, and the resulting influence on cloud radiative properties, is a primary goal of FIRE. The potential for observing variations of cloud characteristics that might be related to variations of available aerosols is studied. Some results from theoretical estimates of cloud reflectance are presented. Also presented are the results of comparisons between aircraft measured microphysical characteristics and satellite detected radiative properties of marine stratocumulus clouds. These results are extracted from Mineart where the analysis procedures and a full discussion of the observations are presented. Only a brief description of the procedures and the composite results are presented

    Multispectral satellite analysis of marine stratocumulus cloud microphysics.

    Get PDF
    Variations in marine stratocumulus cloud microphysics during FIRE IFO 1987 are observed and analyzed through the use of NOAA-9/10 AVHRR satellite data and aircraft in-cloud measurements. The relationships between channel 3 reflectance and cloud microphysical properties are examined through model reflectances based on Mie theory and the delta-Eddington approximation, and reveal a channel 3 reflectance dependence on cloud droplet size distribution. Satellite observations show significant regions of continental influence over the ocean through higher channel 3 reflectances resulting from the injection of continental aerosols and the associated modification of cloud droplet characteristics. Channel 3 reflectance gradients across individual cloud elements correspond to radially varying cloud droplet size distributions within the elements. Various mesoscale and microscale features such as ship stack effluent tracks and pollution sources are observed in the data. Correlations between reflectance values and aircraft measurements illustrate the potential of estimating cloud droplet size distribution and marine atmospheric boundary layer aerosol composition and concentration through use of satellite data. Such an estimation technique may prove useful in determining climatic implications of cloud reflectance changes due to the influence of natural and man-made aerosol sources, and provide a means to assess the performance of boundary layer electro-optic systems. Keywords: Radiometry; Cloud physics. Theses. (edc) 24uhttp://archive.org/details/multispectralsat00mineU.S. Navy (U.S.N.) author

    Nanostructure Scaling in Semi-Dilute Triblock Copolymer Gels

    Get PDF
    There is a considerable body of work that describes the scaling of diblock copolymer micelle dimensions in dilute and semi-dilute solution based upon block degrees of polymerization and copolymer concentration. However, there is a lack of analogous information for semi-dilute ABA triblock copolymer gels, which consist of ABA triblock copolymer dissolved in midblock-selective (B-selective) solvent. The present study uses small angle X-ray scattering to extract micelle dimensions for numerous triblock copolymer gels that vary in copolymer identity (and hence block lengths) and copolymer concentration, as well as gels that contain various ratios of two unique triblock copolymers. Analysis of micelle structural data subsequently translates to universal scaling expressions for the micelle core radius – rA ≈ NA0.53NB−0.14ϕABA0.16 where NA and NB are the endblock and midblock degrees of polymerization, respectively, and ϕABA is the volume fraction of triblock copolymer in the gel – and for the intermicelle spacing – lAA ≈ NA0.09NB0.29ϕABA−0.35. Each scaling expression describes the full collection of experimental data very well. Additionally, these scaling expressions are partially in line with expectations from semi-dilute diblock copolymer solution theory

    Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water

    Get PDF
    To mitigate the effect of atmospheric CO2 on global climate change, gas separation materials that simultaneously exhibit high CO2 permeability and selectivity in gas mixtures must be developed. In this study, CO2 transport through midblock-sulfonated block polymer membranes prepared from four different solvents is investigated. The results presented here establish that membrane morphology and accompanying gas transport properties are sensitive to casting solvent and relative humidity. We likewise report an intriguing observation: submersion of these thermoplastic elastomeric membranes in liquid water, followed by drying prior to analysis, promotes not only a substantial change in membrane morphology, but also a significant improvement in both CO2 permeability and CO2/N2 selectivity. Measured CO2 permeability and CO2/N2 selectivity values of 482 Barrer and 57, respectively, surpass the Robeson upper bound, indicating that these nanostructured membranes constitute promising candidates for gas separation technologies aimed at CO2 capture

    Highly CO2-permeable membranes derived from a midblock-sulfonated multiblock polymer after submersion in water

    Get PDF
    To mitigate the effect of atmospheric CO2 on global climate change, gas separation materials that simultaneously exhibit high CO2 permeability and selectivity in gas mixtures must be developed. In this study, CO2 transport through midblock-sulfonated block polymer membranes prepared from four different solvents is investigated. The results presented here establish that membrane morphology and accompanying gas transport properties are sensitive to casting solvent and relative humidity. We likewise report an intriguing observation: submersion of these thermoplastic elastomeric membranes in liquid water, followed by drying prior to analysis, promotes not only a substantial change in membrane morphology, but also a significant improvement in both CO2 permeability and CO2/N2 selectivity. Measured CO2 permeability and CO2/N2 selectivity values of 482 Barrer and 57, respectively, surpass the Robeson upper bound, indicating that these nanostructured membranes constitute promising candidates for gas separation technologies aimed at CO2 capturepublishedVersio

    Microfibres and macroscopic films from the coordination-driven hierarchical self-assembly of cylindrical micelles

    Get PDF
    Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale

    Communication: Molecular-level insights into asymmetric triblock copolymers: Network and phase development

    Get PDF
    Copyright (2014) AIP Publishing. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Journal of Chemical Physics (Communication) 141 and may be found at http://dx.doi.org/10.1063/1.4896612Molecularly asymmetric triblock copolymers progressively grown from a parent diblock copolymer can be used to elucidate the phase and property transformation from diblock to network-forming triblock copolymer. In this study, we use several theoretical formalisms and simulation methods to examine the molecular-level characteristics accompanying this transformation, and show that reported macroscopic-level transitions correspond to the onset of an equilibrium network. Midblock conformational fractions and copolymer morphologies are provided as functions of copolymer composition and temperature.Nonwovens Institute at North Carolina State University and the Polish Ministry of Science and Higher Education (Grant No. N204 125039)

    Hierarchical Self-Assembly of Toroidal Micelles into Multidimensional Nanoporous Superstructures

    Get PDF
    Materials with controlled porosity play a prominent role in industrial and domestic applications. Although a rich array of methods has been developed to tune the pore size over a broad range (from <1 nm to >1 μm), the fabrication of functional materials with a fully open porous structure with sub-100 nm pore size has remained a significant challenge. Herein, we report the hierarchical assembly of block copolymer toroidal micelles with an intrinsic cavity into multidimensional nanoporous superstructures (pore size 85–90 nm) by modulation of interparticle interactions. The toroids aggregate into oligo-supermicelles or 2D hexagonal arrays through van der Waals interactions upon drying on a substrate, while synergistic hydrogen bonding interactions further promote the formation of 3D nanoporous superstructures directly in solution. Thus, toroidal micelles can be manipulated as a type of distinctive building block to construct nanoporous materials
    • …
    corecore