27 research outputs found

    Genomic diversity of burkholderia pseudomalleiIsolates, Colombia

    Get PDF
    We report an analysis of the genomic diversity of isolates of Burkholderia pseudomallei, the cause of melioidosis, recovered in Colombia from routine surveillance during 2016–2017. B. pseudomallei appears genetically diverse, suggesting it is well established and has spread across the region

    Burkholderia pseudomallei Type G in Western Hemisphere

    No full text
    Burkholderia pseudomallei isolates from the Western Hemisphere are difficult to differentiate from those from regions in which melioidosis is traditionally endemic. We used internal transcribed spacer typing to determine that B. pseudomallei isolates from the Western Hemisphere are consistently type G. Knowledge of this relationship might be useful for epidemiologic investigations

    Phylogeography of Burkholderia pseudomallei Isolates, Western Hemisphere

    No full text
    The bacterium Burkholderia pseudomallei causes melioidosis, which is mainly associated with tropical areas. We analyzed single-nucleotide polymorphisms (SNPs) among genome sequences from isolates of B. pseudomallei that originated in the Western Hemisphere by comparing them with genome sequences of isolates that originated in the Eastern Hemisphere. Analysis indicated that isolates from the Western Hemisphere form a distinct clade, which supports the hypothesis that these isolates were derived from a constricted seeding event from Africa. Subclades have been resolved that are associated with specific regions within the Western Hemisphere and suggest that isolates might be correlated geographically with cases of melioidosis. One isolate associated with a former World War II prisoner of war was believed to represent illness 62 years after exposure in Southeast Asia. However, analysis suggested the isolate originated in Central or South America

    Burkholderia thailandensis Isolated from Infected Wound, Arkansas, USA

    No full text
    The bacterium Burkholderia thailandensis, a member of the Burkholderia pseudomallei complex, is generally considered nonpathogenic; however, on rare occasions, B. thailandensis infections have been reported. We describe a clinical isolate of B. thailandensis, BtAR2017, recovered from a patient with an infected wound in Arkansas, USA, in 2017

    Burkholderia

    No full text

    Comparison of DNA extraction kits for detection of Burkholderia pseudomallei in spiked human whole blood using real-time PCR.

    Get PDF
    Burkholderia pseudomallei, the etiologic agent of melioidosis, is endemic in northern Australia and Southeast Asia and can cause severe septicemia that may lead to death in 20% to 50% of cases. Rapid detection of B. pseudomallei infection is crucial for timely treatment of septic patients. This study evaluated seven commercially available DNA extraction kits to determine the relative recovery of B. pseudomallei DNA from spiked EDTA-containing human whole blood. The evaluation included three manual kits: the QIAamp DNA Mini kit, the QIAamp DNA Blood Mini kit, and the High Pure PCR Template Preparation kit; and four automated systems: the MagNAPure LC using the DNA Isolation Kit I, the MagNAPure Compact using the Nucleic Acid Isolation Kit I, and the QIAcube using the QIAamp DNA Mini kit and the QIAamp DNA Blood Mini kit. Detection of B. pseudomallei DNA extracted by each kit was performed using the B. pseudomallei specific type III secretion real-time PCR (TTS1) assay. Crossing threshold (C T ) values were used to compare the limit of detection and reproducibility of each kit. This study also compared the DNA concentrations and DNA purity yielded for each kit. The following kits consistently yielded DNA that produced a detectable signal from blood spiked with 5.5×10(4) colony forming units per mL: the High Pure PCR Template Preparation, QIAamp DNA Mini, MagNA Pure Compact, and the QIAcube running the QIAamp DNA Mini and QIAamp DNA Blood Mini kits. The High Pure PCR Template Preparation kit yielded the lowest limit of detection with spiked blood, but when this kit was used with blood from patients with confirmed cases of melioidosis, the bacteria was not reliably detected indicating blood may not be an optimal specimen

    Public Health Response to an Imported Case of Canine Melioidosis

    No full text
    Melioidosis in humans presents variably as fulminant sepsis, pneumonia, skin infection and solid organ abscesses. It is caused by Burkholderia pseudomallei, which in the United States is classified as a select agent, with potential to pose a severe threat to both human and animal health, to plant health or to animal and plant products (Federal Select Agent Program, http://www.selectagents.gov/, accessed 22 September 2016). Burkholderia pseudomallei is found in soil and surface water in the tropics, especially South-East Asia and northern Australia, where melioidosis is endemic. Human cases are rare in the United States and are usually associated with travel to endemic areas. Burkholderia pseudomallei can also infect animals. We describe a multijurisdictional public health response to a case of subclinical urinary B. pseudomallei infection in a dog that had been adopted into upstate New York from a shelter in Thailand. Investigation disclosed three human contacts with single, low-risk exposures to the dog\u27s urine at his residence, and 16 human contacts with possible exposure to his urine or culture isolates at a veterinary hospital. Contacts were offered various combinations of symptom/fever monitoring, baseline and repeat B. pseudomallei serologic testing, and antibiotic post-exposure prophylaxis, depending on the nature of their exposure and their personal medical histories. The dog\u27s owner accepted recommendations from public health authorities and veterinary clinicians for humane euthanasia. A number of animal rescue organizations actively facilitate adoptions into the United States of shelter dogs from South-East Asia. This may result in importation of B. pseudomallei into almost any community, with implications for human and animal health

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the identification of Burkholderia pseudomallei from Asia and Australia and differentiation between Burkholderia species.

    Get PDF
    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is increasingly used for rapid bacterial identification. Studies of Burkholderia pseudomallei identification have involved small isolate numbers drawn from a restricted geographic region. There is a need to expand the reference database and evaluate B. pseudomallei from a wider geographic distribution that more fully captures the extensive genetic diversity of this species. Here, we describe the evaluation of over 650 isolates. Main spectral profiles (MSP) for 26 isolates of B. pseudomallei (N = 5) and other Burkholderia species (N = 21) were added to the Biotyper database. MALDI-TOF MS was then performed on 581 B. pseudomallei, 19 B. mallei, 6 B. thailandensis and 23 isolates representing a range of other bacterial species. B. pseudomallei originated from northeast and east Thailand (N = 524), Laos (N = 12), Cambodia (N = 14), Hong Kong (N = 4) and Australia (N = 27). All 581 B. pseudomallei were correctly identified, with 100% sensitivity and specificity. Accurate identification required a minimum inoculum of 5 x 107 CFU/ml, and identification could be performed on spiked blood cultures after 24 hours of incubation. Comparison between a dendrogram constructed from MALDI-TOF MS main spectrum profiles and a phylogenetic tree based on recA gene sequencing demonstrated that MALDI-TOF MS distinguished between B. pseudomallei and B. mallei, while the recA tree did not. MALDI-TOF MS is an accurate method for the identification of B. pseudomallei, and discriminates between this and other related Burkholderia species
    corecore