816 research outputs found

    Failure and impact behavior of facade panels made of glass fiber reinforced cement(GRC)

    Get PDF
    GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests

    Globally Anisotropic High Porosity Silica Aerogels

    Full text link
    We discuss two methods by which high porosity silica aerogels can be engineered to exhibit global anisotropy. First, anisotropy can be introduced with axial strain. In addition, intrinsic anisotropy can result during growth and drying stages and, suitably controlled, it can be correlated with preferential radial shrinkage in cylindrical samples. We have performed small angle X-ray scattering (SAXS) to characterize these two types of anisotropy. We show that global anisotropy originating from either strain or shrinkage leads to optical birefringence and that optical cross-polarization studies are a useful characterization of the uniformity of the imposed global anisotropy.Comment: 18 pages, 14 figures, submitted to Journal of Non-Crystalline Solid

    Bridge distress caused by approach embankment settlement

    Get PDF
    Surtees Bridge, which carries the A66(T) over the River Tees near Thornaby-on-Tees in the UK, has been showing signs of distress that predate its opening in 1981. Subsequent investigations have shown that the bridge distress is related to unexpectedly large settlement of the eastern approach embankment. Recent ground investigations prompted by a proposed widening of the river crossing have produced many new data on the alluvial deposits underlying the site, and explain why embankment settlement was so much larger than originally anticipated. Comparison of the geotechnical parameters obtained from the original and more recent ground investigations suggests that the original investigation significantly underestimated the thickness of an alluvial clay layer underlying the site, and that its coefficient of consolidation was overestimated. Settlement analyses using geotechnical data from the original ground investigations predict moderate embankment settlements occurring principally during construction. Settlement analyses based on all the available data predict far larger embankment settlements occurring over extended time periods. The latter analyses predict an embankment settlement similar to that observed and of sufficient magnitude to cause the observed lateral displacement of the bridge due to lateral loading of its piled foundation

    Influence of curing on pore properties and strength of alkali activated mortars

    Get PDF
    The paper investigates the effect of wet/dry, wet and dry curing on the pore properties and strength of an alkali activated cementitious (AACM) mortar. The pore characteristics were determined from the cumulative and differential pore volume curves obtained by mercury intrusion porosimetry. AACM mortars possess a bimodal pore size distribution while the control PC mortar is unimodal. AACM mortars have a lower porosity, higher capillary pore volume, lower gel pore volume and lower critical and threshold pore diameters than the PC mortar which indicate greater durability potential of AACMs. Wet/dry curing is optimum for AACM mortars while wet curing is optimum for the PC mortar. Shrinkage and retarding admixtures improve the strength and pore structure of the AACMs

    CHD pile performance, Part I:Physical modelling

    Get PDF
    The Continuous Helical Displacement (CHD) pile is an auger displacement pile developed by Roger Bullivant Ltd in the UK. It has performance characteristics of both displacement and non-displacement piles due to the nature in which it is installed. Based on field experience, it has been shown that the load-settlement performance of the CHD installed in sand exceeds the current design predictions based upon conservative effective pile diameter and design parameters associated with auger bored or continuous flight auger (CFA) cast in-situ piles. In an effort to gain a greater understanding of the performance of the CHD pile compared with more conventional piling techniques, a programme of model pile testing and associated Finite Element Modelling (the subject of a Companion Paper) in sand was undertaken. The model testing programme established that greater shaft resistance may be developed for CHD piles than had originally been considered. Based upon the results of the model testing, recommendations for more appropriate approaches to the selection of end bearing and shaft resistance factors are made to predict ultimate load capacity in sand

    Use of laser interferometry for measuring concrete substrate roughness in patch repairs

    Get PDF
    The overall success and long-term durability of a patch repair is significantly influenced by the bond developed at the interface between the concrete substrate and the repair material. In turn, the bond strength is influenced by the topography (roughness) of the substrate surface after removal of the defective concrete. However, different removal methods of defective concrete produce substrate surfaces with different topographies. Hence, the ability to measure and characterise the topography of substrate surfaces is of great importance for evaluating the effectiveness of different removal methods. In this paper, the effect of two removal methods: electric chipping hammers and Remote Robotic Hydro-erosion (RRH) on the surface roughness is investigated through the use of a prototype non-contact (optical) laser interferometry measuring device. Laboratory results show that the above equipment can be used to characterise substrate roughness and confirm the ability of RRH to create rougher surfaces as opposed to chipping hammers

    Microwave processing of cement and concrete materials - towards an industrial reality?

    Get PDF
    Each year a substantial body of literature is published on the use of microwaves to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination

    Near Wellbore Hydraulic Fracture Propagation from Perforations in Tight Rocks: The Roles of Fracturing Fluid Viscosity and Injection Rate

    Get PDF
    Hydraulic fracture initiation and near wellbore propagation is governed by complex failure mechanisms, especially in cased perforated wellbores. Various parameters affect such mechanisms, including fracturing fluid viscosity and injection rate. In this study, three different fracturing fluids with viscosities ranging from 20 to 600 Pa.s were used to investigate the effects of varying fracturing fluid viscosities and fluid injection rates on the fracturing mechanisms. Hydraulic fracturing tests were conducted in cased perforated boreholes made in tight 150mm synthetic cubic samples. A true tri-axial stress cell was used to simulate real far field stress conditions. In addition, dimensional analyses were performed to correspond the results of lab experiments to field-scale operations. The results indicated that by increasing the fracturing fluid viscosity and injection rate, the fracturing energy increased, and consequently, higher fracturing pressures were observed. However, when the fracturing energy was transferred to a borehole at a faster rate, the fracture initiation angle also increased. This resulted in more curved fracture planes. Accordingly, a new parameter, called fracturing power, was introduced to relate fracture geometry to fluid viscosity and injection rate. Furthermore, it was observed that the presence of casing in the wellbore impacted the stress distribution around the casing in such a way that the fracture propagation deviated from the wellbore vicinity
    corecore