24 research outputs found

    Evaluation of urinary porphyrin excretion in neonates born to mothers exposed to airborne hexachlorobenzene.

    Get PDF
    The existence of a link between hexachlorobenzene (HCB) and porphyria cutanea tarda has been known for a long time. However, the epidemiologic data on effects on health caused by prenatal exposure have not provided convincing evidence that HCB alters porphyrin metabolism. Our objectives were to analyze urinary porphyrin excretion and HCB in maternal serum and fetal cord blood in neonates born in a village (Flix) near a chlorinated solvent factory, to detect possible adverse effects in urinary porphyrin excretion caused by prenatal exposure, and to assess their relationship with HCB blood levels. We conducted a cross-sectional study in the Porphyria Unit at a tertiary care facility in Barcelona, Spain, and the Pediatric Unit of the Móra d'Ebre Hospital, the reference hospital of the study area. We included in the study all neonates (n = 68) born in Móra d'Ebre Hospital 1997-1999 and their mothers. We obtained 68 urine specimens of singleton neonates on the third day after birth to test for urinary porphyrin excretion. We obtained 52 fetal cord blood and 56 maternal serum samples for HCB analysis. Total urinary porphyrins were quantified using spectrofluorometry. Porphyrin profile was determined by HPLC. Serum HCB was analyzed by gas chromatography coupled with electron capture detection. In total population, median HCB levels were 1.08 ng/mL in cord blood and 3.31 ng/mL in maternal serum. Total urinary porphyrin concentration was 37.87 micromol/mol creatinine. Coproporphyrin I and coproporphyrin III were the major porphyrins excreted. We found no positive relationship between urinary porphyrin excretion and HCB levels. However, we observed an association between maternal smoking and coproporphyrin excretion. Although high environmental levels of HCB are reported in the town of Flix, we found no alteration in urinary porphyrin excretion

    Erythropoietic protoporphyria

    Get PDF
    Erythropoietic protoporphyria (EPP) is an inherited disorder of the haem metabolic pathway characterised by accumulation of protoporphyrin in blood, erythrocytes and tissues, and cutaneous manifestations of photosensitivity. EPP has been reported worldwide, with prevalence between 1:75,000 and 1:200,000. It usually manifests in early infancy upon the first sun exposures. EPP is characterised by cutaneous manifestations of acute painful photosensitivity with erythema and oedema, sometimes with petechiae, together with stinging and burning sensations upon exposure to sunlight, without blisters. These episodes have a variable severity depending on the exposure duration and may result in chronic permanent lesions on exposed skin. As protoporphyrin is a lipophilic molecule that is excreted by the liver, EPP patients are at risk of cholelithiasis with obstructive episodes, and chronic liver disease that might evolve to rapid acute liver failure. In most patients, EPP results from a partial deficiency of the last enzyme of the haem biosynthetic pathway, ferrochelatase, EC 4.99.1.1/FECH (encoded by the FECH gene). EPP appears to be inherited as an autosomal dominant disease, the clinical expression of which is modulated by the presence of the hypomorphic FECH IVS3-48C allele trans, but recessive inheritance with two mutated FECH alleles has also been described. In about 2% of patients, overt disease was recently shown to be caused by gain-of-function mutations in the erythroid-specific aminolevulinic acid synthase 2 (ALAS2/ALAS, EC 2.3.1.27) gene and named X-linked dominant protoporphyria. Diagnosis is established by finding increased levels of protoporphyrin in plasma and red blood cells, and detection of a plasma fluorescence peak at 634 nm. Investigations for hepatic involvement, ferrochelatase activity level, genetic analysis (FECH mutations, presence of the hypomorphic FECH IVS3-48C allele trans and ALAS2 mutations) and family studies are advisable. Differential diagnosis includes phototoxic drug reactions, hydroa vacciniforme, solar urticaria, contact dermatitis, angio-oedema and, in some cases, other types of porphyria. Management includes avoidance of exposure to light, reduction of protoporphyrin levels and prevention of progression of possible liver disease to liver failure. As the major risk in EPP patients is liver disease, a regular follow-up of hepatic involvement is essential. Sequential hepatic and bone marrow transplantation should be considered as a suitable treatment for most severe cases of EPP with hepatic involvement. EPP is a lifelong disorder whose prognosis depends on the evolution of the hepatic disease. However, photosensitivity may have a significant impact on quality of life of EPP patients

    Ancestral founder of mutation W283X in the porphobilinoge deaminase gene among acute intermittent porphyria patient.

    No full text
    GesondheidswetenskappeInterne GeneeskundePlease help us populate SUNScholar with the post print version of this article. It can be e-mailed to: [email protected]

    Disturbed iron metabolism in erythropoietic protoporphyria and association of GDF15 and gender with disease severity

    No full text
    Patients with erythropoietic protoporphyria (EPP) have reduced activity of the enzyme ferrochelatase that catalyzes the insertion of iron into protoporphyrin IX (PPIX) to form heme. As the result of ferrochelatase deficiency, PPIX accumulates and causes severe photosensitivity. Among different patients, the concentration of PPIX varies considerably. In addition to photosensitivity, patients frequently exhibit low serum iron and a microcytic hypochromic anemia. The aims of this study were to (1) search for factors related to PPIX concentration in EPP, and (2) characterize anemia in EPP, i.e., whether it is the result of an absolute iron deficiency or the anemia of chronic disease (ACD). Blood samples from 67 EPP patients (51 Italian and 16 Swiss) and 21 healthy volunteers were analyzed. EPP patients had lower ferritin (p = 0.021) and hepcidin (p = 0.031) concentrations and higher zinc\u2013protoporphyrin (p < 0.0001) and soluble-transferrinreceptor (p = 0.0007) concentrations compared with controls. This indicated that anemia in EPP resulted from an absolute iron deficiency. Among EPP patients, PPIX concentrations correlated with both growth differentiation factor (GDF) 15 (p = 0.012) and male gender (p = 0.015). Among a subgroup of patients who were iron replete, hemoglobin levels were normal, which suggested that iron but not ferrochelatase is the limiting factor in heme synthesis of individuals with EPP

    Molecular and functional analysis of the C-terminal region of human erythroid-specific 5-aminolevulinic synthase associated with X-linked dominant protoporphyria (XLDPP)

    No full text
    Frameshift mutations in the last coding exon of the 5-aminolevulinate synthase (ALAS) 2 gene were described to activate the enzyme causing increased levels of zinc- and metal-free protoporphyrin in patients with X-linked dominant protoporphyria (XLDPP). Only two such so-called gain-of-function mutations have been reported since the description of XLDPP in 2008. In this study of four newly identified XLDPP families, we identified two novel ALAS2 gene mutations, a nonsense p.Q548X and a frameshift c.16511677del26bp, along with a known mutation (delAGTG) found in two unrelated families. Of relevance, a de novo somatic and germinal mosaicism was present in a delAGTG family. Such a phenomenon may explain the high proportion of this mutation in XLDPP worldwide. Enhancements of over 3- and 14-fold in the catalytic rate and specificity constant of purified recombinant XLDPP variants in relation to those of wild-type ALAS2 confirmed the gain of function ascribed to these enzymes. The fact that both p.Q548X and c.16511677del26bp are located in close proximity and upstream from the two previously described mutations led us to propose the presence of a large gain-of-function domain within the C-terminus of ALAS2. To test this hypothesis, we generated four additional nonsense mutants (p.A539X, p.G544X, p.G576X and p.V583X) surrounding the human XLDPP mutations and defined an ALAS2 gain-of-function domain with a minimal size of 33 amino acids. The identification of this gain-of-function domain provides important information on the enzymatic activity of ALAS2, which was proposed to be constitutively inhibited, either directly or indirectly, through its own C-terminus
    corecore